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Cancer is one of the leading causes of death worldwide. We still do not understand all the details of carcinogenesis, and 
effective treatment is lacking for many oncological diseases. Animal models provide an irreplaceable tool to observe the 
growth and spreading of neoplastic cells in an environment of living organisms, to test the efficacy of cancer treatment, side 
effects, and toxicity, and to study the tumor microenvironment. Mice are the most often used model organisms because of 
their easy handling, short reproductive period, multiple strains, and complete DNA sequencing. An ideal model should 
accurately recapitulate each step of tumor development. Recent techniques have established models that enable the study of 
different aspects of cancer, but choosing a particular model depends on the application of output data. This article aimed to 
review induced, transplantable, and engineered mice and highlight their significance for recent and future cancer research. 
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Several species of animals like rabbits, rats, dogs, monkeys, 
guinea pigs, pigs, zebrafish, Drosophila, and Caenorhabditis 
are used in biomedical research. Mice are considered model 
animals for the study of many human diseases [1], such as 
obesity [2, 3], Parkinson’s disease [4–6], sclerosis multiplex [7, 
8], diabetes mellitus [9, 10], depression [11, 12], or cancer [1, 
13–16]. Mice are popular because they are mammals of small 
size, require inexpensive housing, and are easy to handle; 
they have a rapid onset of the reproductive period, facilitating 
colony expansion. Their lifespan is relatively long. We know 
the complete sequence of the mouse genome, which can be 
easily manipulated. The mouse represents a suitable model 
organism for growing experimental tumors or simulating the 
broad spectrum of events that lead to human cancer. They 
enable understanding of many processes involved in cancer 
biology at the molecular, cellular, and organ levels [13].

History of using mice as model organisms

The laboratory mouse (Mus musculus, house mouse) 
originated in the Middle East, in today’s Pakistan. Man and 

mouse have coexisted since the end of the last ice age [17]. 
The breeding of mice with distinct coat colors and behaviors 
originated in ancient China, Japan, and Europe [18]. The first 
recorded use of mice as animal models was in ancient Greece. 
The purpose was to better understand human anatomy, 
ontogeny, and physiology. Many observations of Alcmaeon 
of Croton, Aristotle, and Erasistratus were documented 
and spread to other countries. Hence, animal models soon 
became a research tool for European and Arab physicians. 
Small vertebrates have been used in biomedical research 
since the beginning of the 16th century when biology shifted 
from descriptive to experimental science. William Harvey 
(1578–1657) used mice to study reproduction and blood 
circulation [19], and Robert Hooke (1635–1703) examined 
the biological consequences of an increase in atmospheric 
pressure on mice [20]. Gregor Johann Mendel is believed to 
be the first who worked with mice while writing the Princi-
ples of Inheritance (1866) but switched to the peas model 
after his bishop admonished him because mice were not the 
optimal tool for the environment of the Augustinian monas-
tery [18]. Also, Théodore Colladon (1792–1862) reported 
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the findings of his breeding experiments, which matched 
Mendel’s 36 years before the publication of J. G. Mendel’s 
results on the plants [21].

In the 19th and 20th centuries, mice became a favorite 
pet. Abbie Lathrop started breeding mice and began to 
sell them to scientists of the nearby technological institute 
(Harvard University’s Bussey Institute of Boston), devoted to 
the then-new science of genetics. In 1929, Dr. Clarence C. 
Little founded Jackson Laboratory (JAX), the world’s leading 
supplier of laboratory mice [22].

Today, breeding, model development, and mouse delivery 
for research are part of the industry sector [18]. In the last 
century, the rapid development of experimental mouse 
models occurred, from chemically induced models [23] 
through cell line-derived xenografts [24] to genetically 
engineered mice. Figure 1 provides an overview of today’s 
cancer mouse models.

Spontaneous mutation models

Spontaneous mutation models give essential informa-
tion in the context of tumor development and the molec-
ular mechanisms involved in this process. Large animals, 
especially companion animals, have a high tendency of 
incidence of spontaneous cancer, and their response to 
therapy is very similar to humans [23]. The frequency of 
spontaneous mutations is very low in mouse colonies (rate 
of ~4.5–6.5×10–9 per locus). Spontaneous models have been 
utilized in cancer research during the last decades. Now, 
they are often substituted by genetically engineered animals 
[24]. Mice with mutations leading to immunodeficiency are 
used in cancer research. Strains homozygous for the Foxn1nu 
mutation exert abnormal hair growth and defective develop-

ment of the thymic epithelium [25]. Mice bearing Prkdcscid 
mutation lack functional B- and T-cells [26]. These defects 
enable the engraftment of tumor xenografts.

Induced mutation models

Induced cancer models are produced by the exposition 
of the animal to risk factors such as carcinogens, radiation, 
viruses, or physical stimuli [27]. Carcinogen-induced models 
of primary cancers can be used to evaluate the therapeutic 
efficacy of drugs, prove the effect of biological factors, and 
explore preventive measures for carcinogenicity. Compared 
to genetically engineered or transplanted models, induced 
primary malignancies can mimic the cancer progress from 
the early stage on through initiation, promotion, and progres-
sion. Nonetheless, it is not known whether the genomic alter-
ations causing these mouse tumors are comparable to those 
found in humans [28].

Cancer models can be induced using several carcino-
gens. Colorectal cancer (CRC) can be induced by azoxy-
methane and dextran sodium sulfate, methyl nitrosourea, 
or N-methyl-N-nitro-N-nitrosoguanidine [25, 29]. Diethyl-
nitrosamine is also used for the induction of hepatocellular 
carcinoma [30], and N-butyl-N-(4-hydroxy butyl)-nitrosa-
mine is used in muscle-invasive bladder cancer research [31]. 
In breast cancer studies, methyl nitrosourea is used for tumor 
induction [32].

According to their mechanisms of action, chemical carcin-
ogens can be divided into genotoxic and non-genotoxic, direct 
and indirect. Genotoxic carcinogens interact with DNA, 
causing mutations. Non-genotoxic carcinogens modulate the 
physiological processes of cell growth, division, and epigen-
etic silencing. A classic example of a genotoxic carcinogen 

Figure 1. Mouse models used in cancer research.



MICE IN CANCER RESEARCH 101

is dimethylbenz[a]anthracene or the methyl nitrosourea 
mentioned above [33, 34]. Non-genotoxic sodium phenobar-
bital is used for the induction of liver tumors [35].

Direct carcinogens do not need to be metabolized to 
induce cancer, e.g. directly acting N-methyl-N’-nitro-
N-nitrosoguanidine is used to induce gastric cancer. In 
contrast, the indirect agents are applied in their inactive 
form and must be activated inside the body. To this group 
belongs, e.g. polycyclic aromatic hydrocarbon-2-amino-1-
methyl-6-phenylimidazo[4,5-b]pyridine, which is applied 
for induction of experimental mouse breast [36] and colon 
[37] tumors.

Chemically induced tumors possess multiple advantages, 
such as easy administration, effective tumor induction, and 
multifocal lesions simultaneously generated in the target 
organs. Inducible experimental tumors often have various 
sizes and degrees of differentiation, but there is a signifi-
cant analogy to clinical human primary cancers concerning 
similar morphology, histopathology, and molecular changes 
[38]. On the other hand, the induction of cancer is a time-
consuming process. Tumors occur unpredictably and hetero-
geneously [27]. Chemically induced mutations show lower 
heterogeneity than the diversity found within a typical cohort 
of human patients [30].

Transplantable models

Tumor cells or tissue are administered to the recipient 
mouse in transplantable models. If the graft is of mouse 
origin, several options are available: 1) autograft model, when 
transplanted cells are administered back into the donor; 2) 
isograft model, when the graft and recipient are genetically 
identical (twins) or highly inbred strain is used; 3) allograft 

model, if the recipient is of a different or not of inbreed strain 
[39]. In these models, immunocompetent mice are used. In 
the xenograft model, cells/tissues of species different from the 
recipient are transplanted. It is necessary to use an immuno-
deficient mouse strain.

The tissues or the cells can be implanted in several ways: 
heterotopically, orthotopically, or systematically (Figure 2). 
Heterotopic transplantation is applied outside the place of 
origin, usually subcutaneously into the flank. It is the most 
often used method due to ease of administration. In ortho-
topic administration, the graft is implanted into the equiv-
alent organ from which the cancer cells originated. The 
orthotopic administration has the most accurate outcomes 
[40]. It offers a microenvironment specific to a given tumor 
type. In breast cancer, transplantation into the mammary fat 
pad is used [41]. The systemic application can be performed 
intravenously to the tail vein [42, 43] by intracardial injec-
tion into the left ventricle to induce lung metastasis [44] 
or to simulate circulating tumor cells [45]. Intraperitoneal 
application is used for simulation of the metastatic spread of 
gastro-intestinal [46] or ovarian cancer [47]. A wide variety 
of available models allows us to study almost all types of 
cancer, including metastasis and different stages of tumor 
progression [48].

Allograft models. Syngeneic models, known as allograft 
models, are the oldest and most often used in preclinical 
studies of tumor immunity and testing immunotherapy in 
a fully functional murine immune system capable of the 
immune response [49] and the complex tumor microenvi-
ronment (TME) [50]. The syngeneic models consist of mouse 
tumor tissues or cells expanded in vitro and implanted into 
genetically identical mouse strains [51]. Therefore, tumor 
rejection does not develop. In the syngeneic model, thera-

Figure 2. Ways of transplanted cells administration into mouse models: subcutaneous administration into flanks A), intravenous into the tail vein 
using restrainer B), intraperitoneal into abdominal cavity C) and orthotopic administration into mammary fat pad D). Orthotopic administration is 
performed under isoflurane anesthesia, starting with a small incision of less than 3 mm, then the mammary fat pad is lifted, and cells are injected (1). 
The wound is then sutured (2, 3) and covered with a silver spray (4).
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reaction. Xenograft models can be induced by established 
cell lines or patient-derived cells or tissues.

Cell line-derived xenografts. The cell line-derived 
xenografts (CDX) are prepared by implanting tumor cells in 
immunodeficient animals. For their technical simplicity and 
easy administration, they are used to quickly test hypoth-
eses and are suggested to be a bridge between in vitro and 
in vivo studies [68]. The CDX models are widely utilized in 
early-stage drug development [69], in studies focused on 
drug resistance [69–71], the potential of epigenetic drugs 
to modulate the sensitivity of cancer cells to therapy [72], 
the study of mechanisms of tumor growth [73], and tumor-
stroma interactions [74].

The CDX are popular due to their low costs, high avail-
ability, many cell lines, easy establishment, and short time of 
tumor development, usually 2–8 weeks [75].

As described above, the cell suspension can be admin-
istrated subcutaneously, which is the easiest way, system-
atically, or orthotopically. A significant advantage for breast 
cancer research is the easy induction of the orthotopic 
xenografts in the breast fat pad [72] in comparison with the 
technically more complicated induction of orthotopic CRC. 
On the other hand, many breast cancer cell lines are highly 
dependent on hormones, so sufficient supplements need to 
be applied via drinking water or pellets [76].

The long-term culture in vitro can irreversibly alter the 
properties of cancer cells, and selection pressure can decrease 
heterogeneity compared with original tumors [77]. Another 
drawback that can affect drug efficacy testing, for example, is 
that most cell lines have been derived from highly aggressive 
malignant tumors [78]. Frequently used CDX for the most 
frequent cancer types are stated in Table 2.

Patient-derived xenografts. Compared to CDX, patient-
derived xenografts (PDX) represent more relevant models 
to human cancer biology [79]. They objectively recapitu-
late key tumor characteristics, including metastatic and 
invasive potential and genetic changes. In PDX models, 

peutic effects on tumor growth, metastasis, and immune 
modulation can be well observed [52].

The number of stabilized tumor cell lines for particular 
cancer types is restricted, limiting the available models [52]. 
However, several well-established cell lines are commonly 
used for breast cancer studies, such as the metastatic cells 4T1 
and non-metastatic cells 67NR for BALB/c mice [53–55] and 
EO771 metastatic breast cancer cell line for C57BL/6 mice 
[56–58]. When conducting studies that require large group 
numbers, the syngeneic system is convenient for rapid and 
reproducible expansion of tumor cell lines before implanta-
tion into hosts [59]. Allograft mouse models are summarized 
in Table 1.

On the other hand, rapid tumor development may alter 
tumor biology, and the use of established cell lines may skew 
results due to the selection of features that favor cell prolif-
eration in vitro [60]. Considerable selection pressure caused 
by in vitro cultivation and deficiency of cancer stem cells 
and other progenitor populations reduces tumor heteroge-
neity and mutational evolution [61]. It is crucial to carefully 
choose the mice’s source to ensure efficient tumor cell 
engraftment. In the breeding colonies, the minimization of 
genetic drift must be guaranteed. The use of animals from 
various sources with various controls of breeding integrity 
is probably the explanation for the wide range of doses of 
4T1 cells for subcutaneous allograft induction, which can be 
found in publications: 1×104 [62], 5×104 [63], 2.5×105 [64], 
1×106 cells [65], 2×106 cells [66], 4×106 cells [67]. We demon-
strated that 1 × 104 cells induced growing allografts on mice 
from one breeder. On the other hand, we observed regression 
of allografts induced by 1×105 4T1 cells in mice from another 
breeder (unpublished data).

Xenograft models. A xenograft is represented by a trans-
planted tissue, organ, or cell from a donor of a different 
species than the recipient (e.g., cells of human origin applied 
to mice). For this purpose, an immunodeficient strain is 
needed to avoid xenograft rejection due to an immune 

Table 1. Common allograft mouse models.
Cancer type Cell line Mouse strain References
Breast carcinoma (TN) 4T1 BALB/c [126-128]
Colon carcinoma
(N-nitroso-N-methylurethane-induced cell line)

CT26.WT BALB/c [129, 130]

Prostate carcinoma Myc-CaP FVB [131, 132]
TRAMP-C2 C57BL/6 [133, 134]

Hepatoma Hepa1-6 C57BL/6 [135, 136]
Ovarian cancer ID8 C57BL/6 [137, 138]
Squamous cell carcinoma SCC7 C3H/He [139, 140]
Bladder carcinoma MBT-2 C3H/He [141, 142]
Pancreatic ductal adenocarcinoma Panc02 C57BL/6 [131, 143]

KPC C57BL/6 [144, 145]
Kidney carcinoma Renca BALB/c [146, 147]
Melanoma B16-F0, B16-F1, B16-F10 C57BL/6 [148-150]

Abbreviation: TN-triple negative



MICE IN CANCER RESEARCH 103

tissue or cells from the donor (human patient) are applied 
to the mouse recipient. Highly immunodeficient mouse 
strains like nonobese diabetic/severe combined immunode-
ficiency (NOD/SCID), NOD scid gamma (NSG), and NOD 
rag gamma (NRG) mice are preferentially used to minimize 

xenograft rejection [76]. The engraftment rate is low if 
athymic mice are utilized for PDX establishment [80].

The PDX models are often used to study the efficiency of 
anti-tumor drugs [81] and to identify cancer cell characteris-
tics [76] or TME [82].

Table 2. Cell line-derived xenograft mouse models for the 15 most frequent cancer types.
Cancer type Cell line Mouse strain References
Breast carcinoma  (TN) MDA-MB-231 athymic nude [151]

NSG [128]
MDA-MB-468 athymic nude [152-154]

Breast carcinoma (ER+) MCF7 SCID [155]
Breast carcinoma (HER+) SK-BR-3 athymic nude [156, 157]
Breast ductal carcinoma
(ER-, HER+, trastuzumab-resistant)

JIMT-1 athymic nude [158]
SCID beige [72]

Non-small cell lung cancer A549 athymic nude [159, 160]
H1299 athymic nude [161, 162]
H1975 athymic nude [163, 164]

Colon carcinoma SW620 athymic nude [165]
NOD/SCID [166]

HT-29 athymic nude [167]
SCID [168]

LS 180 athymic nude [169, 170]
SW480 athymic nude [171, 172]
HCT 116 athymic nude [173, 174]

Prostate carcinoma LNCaP athymic nude [175, 176]
PC-3 athymic nude [177]

NSG [178]
Gastric carcinoma HGC-27 athymic nude [179, 180]
Pediatric hepatocellular carcinoma Hep3B2.1-7 athymic nude [181]

NSG [182]
Liver carcinoma SK-HEP-1 athymic nude [136, 183]
Cervix carcinoma HeLa athymic nude [184-186]

SiHa athymic nude [187, 188]
Tongue squamous cell carcinoma CAL 27 athymic nude [189]

NSG [190]
Esophageal squamous cell carcinoma KYSE-150 athymic nude [191]

SCID beige [192]
Thyroid carcinoma 8505C athymic nude [193, 194]
Bladder carcinoma T24 athymic nude [195, 196]

5637 athymic nude [197, 198]
B-cells non-Hodgkin’s lymphoma SU-DHL-6 SCID [199]

NOD/SCID [200]
Pancreatic ductal carcinoma MIA PaCa-2 athymic nude [201, 202]

PANC-1 athymic nude [203]
SCID [204]

Renal cell carcinoma 786-O athymic nude [205, 206]
A-498 athymic nude [207, 208]

Endometrial carcinoma Ishikawa athymic nude [209, 210]
Melanoma A2058 athymic nude [211, 212]

M14 athymic nude [213]
A-375 athymic nude [214, 215]

SCID beige [216]
Abbreviations: TN-triple negative; ER+-estrogen receptor positive; HER+-human epidermal growth factor receptor 2 positive
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Tumor specimens are processed to single-cell suspen-
sion before transplantation, or small pieces of tissue can 
be implanted subcutaneously. Our experience with CRC 
samples shows that non-processed tissues engraft and prolif-
erate better than single-cell suspension (unpublished data).

The efficiency of xenograft engraftment dramatically 
differs according to the type of tumor origin and strain 
of immunodeficient mice. For breast cancer, the rate of 
engrafted fresh patient tissues into NOD/Scid mice is approx-
imately 30% [76]. Engraftment rates can differ according 
to hormonal sensitivity: estrogen receptor-positive (ER+) 
9%, metastatic ER+ 16%, human epidermal growth factor 
receptor-2 positive (HER2+) 25%, metastatic HER2+ 33%, 
triple-negative tumor 58%, metastatic triple-negative tumor  
85% with using NOD/SCID, NSG, or NRG mice. The start 
of xenograft growth can take several months. To stabilize 
xenograft growth, passaging through one or two mice can 
be performed [76]. It is also necessary to remember that 
PDX undergoes intense selection pressure [77] caused by 
replacing human stromal components with different mouse 
microenvironments [83].

In 2019, the National Cancer Institute launched a reposi-
tory of PDX and in vitro patient-derived cell cultures. The 
European Molecular Biology Laboratory and the Jackson 
Laboratory recently launched a platform collecting clinical, 
genomic, and functional data from patient-derived cancer 
models [79].

Since patient-derived tissue is engrafted on highly 
immunodeficient mouse strains, these models do not enable 
studying the interaction between cancer cells and the immune 
system [78]. Recently, the induction of PDX in humanized 
mice (described in detail below) represents a more specific 
and reliable system [84].

Humanized mice. Humanized mice (HM) are immunode-
ficient mice engrafted with functional human cells or tissues. 
They provide a suitable tool for studying tumor development 
in the context of a human immune system. There are three 
main classes of humanized mice: A) human gene transgenic 
model – mice genome is engineered to express a specific human 
gene; B) humanized organ model – mice carrying a human 
organ; C) humanized immune system model – immunode-
ficient mice with the reconstituted human immune system 
[85]. It is necessary to consider the distinctions between the 
human and mouse immune systems. Significant differences 
were identified in T-cell signaling pathways, relative circu-
lating lymphoid and myeloid cell levels, and innate immune 
mechanisms [86]. Mice with the humanized immune system 
and engrafted with human xenografts (CDXs or PDXs) 
represent a  valuable preclinical model for the investigation 
and evaluation of potential therapies and studying molecular 
pathways and mechanisms of tumor development) [87–89].

Humanized models enable the recapitulation of normal 
human immune responses, antibody production against 
injected antigens and allospecific T-cell cytotoxicity [87]. 
The combination of HM with PDX enables the study of 

the complex immunobiological properties associated with 
cancer and provides a more specific assessment of cancer 
immunotherapies [90].

Several approaches are available for the humanization of 
mice’s immune systems. The first is an intravenous or intra-
peritoneal injection of human peripheral blood leukocytes, 
suitable for studying T-cell function in vivo. This model is 
ready to use from the 5th day after humanization, but only 
for 4–6 weeks due to the development of xenogeneic graft-
versus-host disease (GvHD) [91]. In NSG mice humanized 
by human peripheral blood mononuclear cells (PBMC), 
GvHD was described after 4–5 weeks. In the NSG-β2m−/− 

variant deficient in major histocompatibility complex type 
1, GvHD was observed by 8 weeks post-engraftment [92]. 
Another approach is intravenous or intrafemoral application 
of human CD34+ hematopoietic stem cells (HSC). Mice must 
first be preconditioned with gamma irradiation or injec-
tion of busulfan to suppress their bone marrow function for 
efficient engraftment of administered hematopoietic cells. 
HSC can be derived from different sources, such as bone 
marrow, umbilical cord blood, fetal liver, or granulocyte 
colony-stimulating factor-mobilized peripheral blood. The 
CD34+ cell transplantation results in the presence of human 
B- and T- lymphocytes, myeloid, and antigen-presenting 
cells in the peripheral hematopoietic tissues of HM, but only 
in low levels of granulocytes, platelets, and red blood cells. 
Application of HSC is more time-consuming (10–12 weeks 
for cell differentiation) but provides a much more extended 
period for research (up to 45 weeks from busulfan initia-
tion) [87, 93]. The subsequent infiltration of CD4+ and CD8+ 
T-cells in a spleen and tumor xenografts vary by tumor type 
and depends on the tumor rather than the stem cell donor 
[94]. The bone marrow/liver/thymus (BLT) model uses trans-
plantation of the human fetal liver and thymus under the 
kidney capsule and intravenous injection of the autologous 
fetal liver HSC, which leads to the development of all human 
hematopoietic cell lineages. BLT model provides a complete 
and fully functional human immune system due to arranging 
the microenvironment of the human thymus. On the other 
hand, T-cells with an affinity for mouse major histocompat-
ibility complex are active, leading to an incidence of xenoge-
neic GvHD [87, 90, 93].

A study comparing NSG and hu-BLT mice bearing oral 
or pancreatic cancer showed that hu-BLT mice better reflect 
the complexity of human cancer. NK cells in hu-BLT mice 
expanded and exerted functional activation upon activating 
signals [95].

Humanized NSG mice also represent a valuable model 
for evaluating the efficacy of anti-PD-1 therapy. In a study by 
Rosato et al., tumors were induced 24 h after HSC transplan-
tation, which enabled human immune cells to be exposed 
to tumor antigens during their development. Immune-
humanization had no adverse effect on tumor growth. Tumor 
xenografts were predominantly infiltrated by myeloid cells 
recapitulating the TME of  ER+ breast tumors [96].
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Genetically engineered mice

Genetic engineering techniques have recently become 
an irreplaceable tool for producing mouse cancer models. 
Genetically engineered mice (GEMs) for cancer research 
were constructed in the early 1980s by replacing the mouse 
myc gene with the Mouse mammary tumor virus (MMTV) 
promoter/myc fusion recombinant gene and were termed 
oncomice. Recently, GEMs have included many mice predis-
posed to develop particular malignancies spontaneously [97, 
98].

Genetic modification leads to the gain or loss of function. 
The gain of function means incorporating exogenous gene(s) 
into the mice genome. Animals with a gain-of-function 
mutation can be transgenic or knock-in, both with inserts in 
the genome but prepared by different methods (described in 
more detail below).

The transgenic mouse is generated by the microinjection 
of foreign DNA or infection with a viral vector containing the 
gene construct into a zygote or embryonic stem cells. During 
transgenesis performed in this way, selecting the exact site 
of transgenic DNA incorporation is impossible, so integra-
tion is a random method [99, 100]. Several well-established 
models were created this way, e.g., MMTV- Polyoma Virus 
middle T antigen (PyMT) transgenic mice and MMTV-Neu 
(C-erbB-2 ) mice – models frequently used to study 
metastatic breast cancer. They were developed by inserting 
PyMT or an activated Neu oncogene into the MMTV LTR 
promoter [101–103].

Knock-in mice are usually generated by inserting a 
targeting vector into a specific embryonic stem cell genome 
site via the Cre-loxP recombinase method [99, 100]. Imple-
menting a bacteriophage Cre/loxP recombination system for 
manipulating mouse genome represents a milestone in devel-
oping genetically engineered models [104]. For example, 
knock-in mice with tissue-specific conditional expression of 
phosphoinositide-3-kinase (PI3K) catalytic subunit p110α, 
mutated allele (H1047R) were generated to investigate the 
initiation development and progression of mammary tumor 
growth [105]. It was demonstrated on mice with knock-in of 
steroid receptor coactivator-1 (SRC-1) that the homozygous 
P1272S single nucleotide polymorphism increases tamox-
ifen-induced bone protection after ovariectomy, reduces the 
growth of orthotopic breast tumors but increases metastases 
to the lungs [106].

The loss of gene function is commonly performed by 
a knock-out strategy for disrupting or silencing gene(s) 
of interest. Knocked-out mice are often used to research 
oncogenes, tumor-suppressor genes, and metabolic genes, 
and they help understand causes and relationships in cancer 
development. Knocked-out models also provide a potent tool 
for assessing targeted therapies [100].

According to the control of gene expression, genetic 
modifications are classified into constitutive and conditional. 
Constitutive modifications are present in all cells of animals. 

They can cause lethality, sterility, and developmental defects 
that lead to the model’s failure. Defects like liver and kidney 
necrosis, often associated with reduced life span, can be 
observed [107]. Approximately 30% of gene knock-out mice 
have no viable descendants [108]. Therefore, spatial and 
temporal control of genes of interest was developed [99, 109].

Human cancer is caused by the accumulation of somatic 
mutations arising in a single cell. Therefore, genetically 
engineered mouse models (GEMMs) with deletion or 
mutation in entire animal cannot imitate the clonal nature 
of human cancer. Somatic-engineered mice represent the 
solution to this issue. Non-germline (somatic) geneti-
cally engineered mice carry genetically engineered alleles 
in somatic cells but not in germline cells. In general, the 
conditional knock-in GEMs primarily use tissue-specific 
promoters or termination sequences (STOP cassette) to 
stop the translation or transcription of insert [110]. In the 
knock-out and knock-in models, site-specific recombinases, 
bacterial Cre or yeast FLP enzymes, catalyze the recombina-
tion between specific sites to disrupt or insert the target gene 
[111].

The terms transgenic and genetically engineered mice are 
often used as synonyms. The National Institutes of Health 
National Cancer Institute describes the term transgenic as 
‘whose genome has been altered by the introduction of one or 
more foreign DNA sequences from another species by artifi-
cial means’ [112]. The Federation of European Laboratory 
Animal Science Associations describes the term more specifi-
cally in its actualized guidelines for producing and nomencla-
ture of transgenic rodents. Transgenic animals are defined ‘by 
the presence of a stably introduced foreign (in vitro recom-
bined) DNA sequence into animal’s germline’ [113].

To faithfully simulate human cancer, multiple approaches 
can be combined to create an engineered mouse model. Dual 
systems employing the MMTV-Flp transgene and the tamox-
ifen-inducible Cre recombinase were developed to delete or 
activate target genes in the mammary gland [114].

The essential role of the E2A gene, encoding E2A basic 
helix-loop-helix transcription factors modulating stemness, 
metastasis, and therapeutic resistance in breast cancer, 
was demonstrated on PyMT mice harboring a conditional 
deletion of the E2A [115].

In tumorigenesis, TME plays an essential role. Many 
GEMs rely on the Cre system, and Cre-loxP recombination 
cannot be applied in the engineering of stromal cells, which 
represent a crucial part of TME. Pdx1FlpO knock-in mouse 
(KPF mouse) expressing FlpO recombinase in pancreatic 
epithelial cells was established to circumvent this limitation. 
Combining the KPF mouse with any stroma-specific Cre 
provides an excellent in vivo tool to study mechanisms of 
crucial tumor-TME interactions [116].

The discovery of the clustered, regularly interspaced 
short palindromic repeats (CRISPR)-based genome editing 
approach led to the revolution in preparing non-germline 
GEMs. It enabled very efficient engineering of mice, 
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mimicking a broad spectrum of mutations found in human 
cancer. CRISPR/Cas technology was used to produce female 
mice that spontaneously developed mammary triple-
negative tumors [117] or lobular breast carcinoma [118]. 
This technology enabled simultaneous knock-in and knock-
out mice. Knock-in KRAS and simultaneously conditional 
p53 and LKB1 knock-out mice with sgRNA cassettes for 
managing gene expression were produced for observing lung 
tumor growth [119].

Recently, GEMMs for many types of cancer have become 
available. Using the transcriptional control of specific 
promoters, transgenic models can simulate spontaneous 
tumorigenesis by expressing one or more putative oncogenes 
[120].

Based on the above-mentioned mammary gland-specific 
PyMT overexpression, several breast cancer models have 
been established [102]. Small cell lung cancer (SCLC) is 
a disease with a poor prognosis, and it represents approxi-
mately 15% of lung cancer cases. Almost all tumors exert 
the loss of RB1 and TP53 tumor suppressor genes, and these 
mutations also carry SCLS GEMMs [121]. In CRC, many 
GEMs include APC mutation [27]. The increasing incidence 
and aggressive phenotype of pancreatic ductal adenocar-
cinoma (PDAC) gave rise to the development of models 
mirroring the disease. G12D KRAS mutation is present 
in more than one-third of patients suffering from PDAC. 
Mutated KRAS combined with TP53 mutation was intro-

duced to PDAC mouse models. Examples of GEMMs for the 
most frequent cancers are mentioned in Table 3.

Engineered mice also represent a valuable tool for 
immuno-oncology research. A study targeted at the efficacy 
of anti-PD1 treatment on myeloid tumors demonstrated the 
impact of Trem2 receptors on the TME via knock-out Trem2 
mice [122]. The NINJA (iNversion Inducible Joined neoAn-
tigen) model enables the inducible expression of neoantigens. 
It was established to overcome the leaky expression of neoan-
tigens in the thymus. NINJA mice bypass central and periph-
eral tolerance mechanisms and exert cell immune responses 
to neoantigens expressed in peripheral tissues [123].

In conclusion, GEMMs enable cancer research at different 
stages and induce experimental tumors within an immuno-
competent environment where cell-cell and cell-microen-
vironment interactions are present. They enable functional 
validation of the pathways of human tumors and confirm 
genetic alterations associated with progression and metas-
tasis [109, 124, 125].

Some limitations in extrapolating findings to human 
malignancies arise from differences between timescales of 
disease burden and tumor growth in mice (up to 2 years) and 
humans (years/decades) [124].

In conclusion, future progress in cancer therapy depends 
on our understanding of the complicated events associ-
ated with the development of malignant tumors. Animal 
models enable the complex study of biological mechanisms 

Table 3. Overview of GEMMs for selected types of cancer (according to [217], adapted).

Cancer type Usual abbr. Genotype References
Breast cancer MMTV-PyMT** [103]

MMTV-Erbb2V664G [218]
MMTV-Cre;Trp53flox/flox [219]

Lung adenocarcinoma KP KrasLSL-G12D/+ ;Trp53flox/flox [220]
Small cell lung cancer* RP Rb1flox/flox ;Trp53flox/flox [221]

TKO Rb1flox/flox;Trp53flox/flox;p130flox/flox [222]
Colorectal cancer MIN APCMin/+ [223]

iKAP Villin-CreERT2;Tet-KrasG12D;Apcflox/flox;Trp53flox/flox [224]
KPC:APC Apctm1Tno;Krastm4Tyj; Tg(CDX2-cre/ERT2)752Erf [225]

KrasLSL-G12V/+; Apcflox/flox [226]
Prostate cancer NPK Nkx3.1-CreERT2/+ ;Ptenflox/flox ;KrasLSL-G12D/+ [227]

Tg(TRAMP)8247Ng [228]
Tg(Pbsn-Ar*E231G)7353Ng [229]

Pancreatic ductal adenocarcioma KC KrasG12D, Pdx1 Cre [230]
KPC KrasLSL-G12D/+;Trp53R172H/+;Pdx1-Cre [144]

KrasLSL-G12D/+;Cdkn2aflox/flox ;Pdx1-Cre [231]
KPF Pdx1FlpOki;FSF-KrasG12D/+,p53frt/frt [116]

Melanoma Tyr::CreERT2;BrafCA(V600E)/+;Ptenflox/flox [232]
Tyr::NrasQ61K;Ink4a–/– [233]
Tyr::CreERT2;BrafCA(V600E)/+;Ptenflox/flox;Ctnnb1loxex3/loxex3 [234]

Ovarian cancer Pax8-Cre;Brca1flox/flox; Trp53flox/flox;Ptenflox/flox [235]
B-cell lymphoma Tg(Cd79b-TCL1A)BKTeit [236]

Notes: *for more models, look in [121]; **for more PyMT-based breast cancer models, look in [102]
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of neoplastic growth, metastasis, and tumor-stroma interac-
tion.  Despite advances in in vitro systems and ethical issues, 
they are irreplaceable in developing new therapeutical strate-
gies. Limitations of particular models represent a challenge 
to developing more accurate systems.
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