Home Neoplasma 2023 Neoplasma Vol.70, No.3, p. 390–401, 2023

Journal info


6 times a year.
Founded: 1954
ISSN 0028-2685
ISSN 1338-4317 (online)

Published in English

Editorial Info
Abstracted and Indexed
Submission Guidelines

Select Journal







Webshop Cart

Your Cart is currently empty.

Info: Your browser does not accept cookies. To put products into your cart and purchase them you need to enable cookies.

Neoplasma Vol.70, No.3, p. 390–401, 2023

Title: Effects of different-sized silver nanoparticles on morphological and functional alterations in lung cancer and non-cancer lung cells
Author: Kristina Jakic, Michal Selc, Radka Macova, Antonia Kurillova, Libor Kvitek, Ales Panacek*, Andrea Babelova

Abstract: Silver nanoparticles (AgNPs) exhibit unique physicochemical properties, making these nanomaterials attractive for various medical applications. Among them, AgNPs have shown great potential in the treatment of cancer by inducing apoptosis in cancer cells, inhibiting tumor growth, and enhancing the efficacy of conventional cancer treatments such as chemotherapy and radiation therapy. Despite the promising therapeutical advantage of AgNPs, there are several challenges that need to be addressed. One of the most important is AgNPs’ toxicity, which in case of treatment might be extended to non-cancerous cells and tissues. In our study, we therefore investigated the effects of spherical AgNPs with the silver core size of 10, 30, and 45 nm coated with polyacrylic acid (PAA-AgNPs) in an in vitro model using cancer (A549) and non-cancer (HEL299) cells. We estimated the impact of these nanoparticles on cell viability, cell proliferation, and cell actin cytoskeleton remodeling. Moreover, changes in the expression of TNFA, IL-10, FN1, and SOD1 mRNA induced by PAA-AgNPs were determined. Our results suggest that the smallest (10 nm) PAA-AgNPs are the most effective in apoptosis induction, however, they are also the most toxic from the three AgNPs types to both, cancer and non-cancer cells, while bigger (30 and 45 nm) PAA-AgNPs showed fewer undesirable effects in these pulmonary cells.

Keywords: AgNPs; lung cancer; A549; HEL299; polyacrylic acid
Published online: 24-Jul-2023
Year: 2023, Volume: 70, Issue: 3 Page From: 390, Page To: 401
doi:10.4149/neo_2023_230525N283


download file



© AEPress s.r.o
Copyright notice: For any permission to reproduce, archive or otherwise use the documents in the ELiS, please contact AEP.