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Abstract. The present study aimed to provide experimental evidence that CDELNs (coffee-derived 
exosome-like nanoparticles) may be a candidate for the treatment or prevention of amyloid-β (Aβ)-
induced Alzheimer’s disease (AD). An in vitro Alzheimer’s model was created with Aβ-induced 
toxicity in mouse hippocampal neuronal cells (HT-22). Aβ(1-42)-exposed cells were treated with 
different concentrations of CDELNs (1–50 μg/ml) and the viability of cells was analyzed. The change 
in the mitochondrial membrane potential (ΔΨm) of cells was also determined. CDELNs treatment 
increased the viability of Aβ(1-42 )-toxicity-induced HT-22 cells significantly. The increase in the 
viability of Aβ(1-42)-toxicity-induced cells was correlated with an improvement in ΔΨm. CDELNs 
treatment restored the dissipated ΔΨm. These results suggested that CDELNs protect neuronal cells 
against Aβ(1-42)-induced neurotoxicity by repairing mitochondrial dysfunction. CDELNs might be 
a useful neuroprotective agent for the treatment or prevention of Aβ-induced AD. Further animal 
and clinical studies should be carried out to investigate the neuroprotective potential of CDELNs 
against Aβ-induced AD.
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Introduction

Alzheimer’s disease (AD) is the most common type of 
dementia and is mostly seen in elderly people, predicted 
to affect over 100 million people globally by the year 2050 
(Monteiro et al. 2023). AD is seen in different regions of 
the central nervous system manifested by loss of neurons, 
synapses, cognitive functions, and various neuropsychiatric 
and behavioral symptoms (Gilman 1997; Lleó et al. 2006). 
Despite the scientific developments, there is no effective 
neuroprotective treatment for AD (Burns and Iliffe 2009). 
AD is characterized by neuritic plaques and neurofibrillary 
tangles as a  result of the accumulation of the amyloid-β 
(Aβ) peptide in the medial temporal lobe and the neocorti-

cal structures. Aβ(1-42) is the main component of amyloid 
plaques in AD brains. Autosomal dominant APP which is 
located very close to β- and y-secretase cleavage sites flank 
the Aβ formation sequence (Masters et al. 1985; Selkoe 2001). 
Although research continues on whether Aβ plaques are 
the cause or consequence of AD, the increased toxic effect 
due to overproduction and accumulation of Aβ peptides is 
thought to be the primary cause of neurodegeneration and 
cognitive decline. In light of the data obtained, it is known 
that the accumulation and density of Aβ in different regions 
directly affect the course of the disease and the clinical condi-
tion of the patient (Masters et al. 1985; Selkoe 2001; Rocchi 
et al. 2003). Mitochondrial dysfunction is an important 
contributing factor in the development and progression of 
Aβ-induced AD (Perez Ortiz and Swerdlow 2019; Wang et al. 
2020). Neurocognitive changes and memory problems seen 
in Aβ-induced AD are mostly associated with mitochon-
drial dysfunction (altered mitochondrial dynamics, reduced 
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mitochondrial membrane potential (ΔΨm), etc.) (Bhatia et 
al. 2022). Mitochondrial dysfunction results in some of the 
crucial functions in neuronal cells such as impaired energy 
production, increased oxidative stress, and neuronal cell 
death. The accumulation of Aβ on the mitochondrial mem-
brane and the interaction of Aβ with the mitochondrial 
matrix also results in the degeneration of neuronal synapses 
(Pagani and Eckert 2011). 

Aβ-induced in vitro AD model is a  unique chemical-
induced in vitro AD model to examine the in vitro neuropro-
tective effects of the agents against AD (Gouras et al. 2000; 
Liu et al. 2009; Brimson et al. 2012; Lee et al. 2016; Liu et al. 
2017; Lu et al. 2018; Li et al. 2020; Cheng et al. 2021; Zhang et 
al. 2023). In addition, the HT-22 cell line derived from HT4 
cells of the mouse hippocampus is used to establish in vitro 
models of neurodegenerative disorders and has been widely 
used for the development of treatments for neurodegenera-
tive diseases including AD (Liu et al. 2017; Wang et al. 2019; 
Cheng et al. 2021; Prasansuklab et al. 2023).

Exosomes are natural nanoparticles (NPs) of 30–150 nm 
in size, secreted by almost all cells. They have a particular 
lipid bilayer membrane and a  natural targeting potential 
due to the proteins found in their membranes. Exosomes 
contain materials such as miRNA and proteins that carry 
the characteristics of the cell from which they originate. 
There are limitations and disadvantages in the use of ex-
osomes derived from human cells as their genetic materials 
can change the phenotypic and genotypic characteristics 
of the targeted cell. Therefore, research on plant-derived 
exosome-like nanoparticles (PDELNs) has been intensified 
recently. PDELNs are small vesicles released by multivas-
cular bodies mainly to communicate between cells and 
regulate immunity against pathogen attacks. Functional 
molecules of PDELNs are preserved in intracellular digestive 
vacuoles and mediated by unknown mechanisms to affect 
targeted cell’s intracellular functions with EV carrier support 
(Bryniarski et al. 2015; Greenhill 2017). They are absorbed 
by intestinal macrophages and can be easily internalized by 
mammalian cells. PDELNs have many advantages such as 
low toxicity, efficient cellular uptake, high biocompatibility, 
stability, large-scale production, etc. They also have anti-
inflammatory, immunomodulatory, and regenerative effects. 
Due to the many advantages of PDELNs, their potential use 
in medical applications arouses curiosity, and in vitro and in 
vivo studies have been carried out in this field (Zhang et al. 
2016; Di Gioia et al. 2020; Kameli et al. 2021; Karamanidou 
and Tsouknidas 2021; Lian et al. 2022).

Despite the neuroprotective effects of coffee against AD 
being reported, there is no study that investigated the efficacy 
of coffee-derived exosome-like nanoparticles (CDELNs) for 
the treatment of AD in the literature so far. The present study 
investigated the possible neuroprotective effects of CDELNs 
on HT-22 cells against Aβ-induced AD. 

Material and Methods

Isolation of CDELNs from coffee extracts 

We used a low pH-based polyethylene glycol (PEG) precipi-
tation method for isolation of CDELNs. The low pH-based 
PEG precipitation method for isolation of PDELNs has some 
advantages compared to other isolation methods. By using 
a low pH-based PEG precipitation method, PDELNs are iso-
lated in high yields without compromising the stability and 
biochemical composition of PDELNs. Isolation of PDELNs 
in acidic conditions increases the amount of intact exosomal 
proteins and RNAs. Moreover, PDELNs are efficiently taken 
up by target cells when they are isolated by a low pH-based 
PEG precipitation method (Ban et al. 2015; Kalarikkal et 
al. 2020; Suresh et al. 2021). Briefly, 50 g  coffee extracts 
(Indonesian Sumatra Mandheling DP Gr. 1) were homog-
enized in 500 ml distilled water using a grinder under no 
load condition for 3 min. The homogenized solutions were 
passed through a nylon mesh filter with a pore diameter of 
200 µm to remove excess fiber and then transferred to falcon 
tubes. The solutions transferred to the tubes were subjected 
to differential centrifugation (2,000×g for 10 min, 6,000×g 
for 20 min, and 10,000×g for 40 min). After the differential 
centrifugation, the supernatants were taken, the pH values 
were fixed at 4.25 (using HCl or NaOH), and 10% (w/v) PEG-
6000 (Sigma Aldrich) was added to each supernatant. Then, 
the supernatants were incubated overnight at 4°C. Following 
the incubation, the supernatants were centrifuged at 8,000×g 
for 30 min. The pellets obtained after centrifugation were 
dissolved in distilled water, and the obtained solution was 
then dialyzed against ultrapure water at 4°C using a dialysis 
membrane with a pore size of 10 kDa (MW cutoff) overnight. 
Then, the solution was passed through a 0.45 μm cellulose 
acetate filter. The quantity of exosomal protein was deter-
mined by a BCA (bicinchoninic acid) Protein Assay. Briefly, 
standards were prepared in eppendorf tubes according to the 
BCA Assay Kit procedure. 20 µl of prepared standards and 
samples were added to each well. Then 200 µl (Solution A + 
Solution B) mixture was added to each well and pipetted. 
The samples were incubated for 30 min at 37°C and then 
for 10 min at room temperature. The absorbance values of 
the standards and samples were measured at a wavelength 
of 570 nm using a microplate reader. A standard curve was 
created according to the absorbance values obtained from 
the standards, and the amount of CDELNs was determined 
for each sample.

Measurement of particle size by nanoparticle tracking ana-
lysis (NTA)

The particle size of NPs was measured by NTA, which is 
based on measuring the characteristic motion of NPs in solu-
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tion based on Brownian motion. It detects information about 
particles in solution by capturing the after-light illumination 
scattered by a laser and uses the Stokes-Einstein equation 
and cell volume information to determine the concentra-
tions and sizes of vesicles. CDELNs samples produced by 
the ultracentrifugation method were diluted using ddH2O 
at a ratio of 1:100, 1:1000, and 1:10000 in 1.5 ml eppendorf 
tubes with a 0.1 μm-filter. The size of CDELNs in the diluted 
samples was analyzed with the NTA (Malvern Analytical, 
Nanosight NS300).

The determination of the distribution of particle size by 
scanning electron microscopy (SEM)

The distribution of diameters of CDELNs was analyzed 
by SEM (QUANTA 400F Field Emission). NPs were first 
washed with PBS solution and fixed with 2.5% glutaral-
dehyde solution. The samples were then washed with PBS 
and the glutaraldehyde was removed. Dehydration of the 
samples was achieved with increasing ethanol concentra-
tions from 30% to 100%. Then, the samples were dried at 
room temperature and photographed with high resolution 
at different positions with appropriate magnification. The 
distribution of the diameters of CDELNs in obtained im-
ages was measured manually with the help of the ImageJ 
program (randomly selected on the SEM grid). The nano-
particle size and surface charge were analyzed by dynamic 
light scattering. The coffee-derived exosome samples were 
analyzed 3 times at 20°C.

Cytotoxicity assay

HT-22 cells acquired from the Health Sciences University 
Gulhane Stem Cell Research Laboratory were cultured in 
75-cm2 culture flasks in DMEM (Dulbecco’s Modified 
Eagle’s medium) with 10% fetal bovine serum (Invitrogen), 
2 mM glutamine, 100 units/ml penicillin and 100 mg/ml 
streptomycin in a  medium using 95% humidity and 5% 
CO2 at 37°C (pH: 7.2–7.4). Cell viability and number were 
determined with 0.4% trypan blue dye using an automated 
cell counter (RWD C100). Non-viable cells absorb the trypan 
blue dye and appear blue-stained under the light microscope. 
Thus, non-living cells could be counted by distinguishing 
them from living cells. In all experiments, before starting 
the experiments, the rate of viable cells was determined 
as (Living cell rate (%) = the number of cells that did not 
receive dye/total number of cells ×100) and the experiments 
were started at the values where the cell viability was 95%. 
HT-22 cells were incubated with CDELNs at concentrations 
of 1–50 μg/ml for 24 hours. After 24 hours of incubation, 
the cell viability of HT-22 cells was analyzed by WST-1 as-
say. Before performing the WST-1 viability test, the WST-1 
stock solution (ABP Biosciences) was prepared and 100 μl 

of the stock solution was applied to each well. The cells were 
then incubated for 2 hours. After 2 hours of incubation, 
absorbance values were measured with a microplate reader 
at 450 nm wavelength.

Establishment of an in vitro AD model with Aβ(1-42) 
toxicity

1 mM stock solution was prepared by dissolving lyophi-
lized Aβ(1-42) peptides in distilled water and DMSO. The 
prepared stock solution was diluted with serial dilutions to 
prepare Aβ(1-42) solutions in different concentrations (2.5, 
5, 10, 25 and 50 µM). HT-22 cells were seeded in 96-well 
plates at 104 cells/ml in each well. Cells were incubated 
with Aβ(1-42) peptides at different concentrations (5, 10, 
25 and 50 µM) for 24 hours. After incubation, a WST-1 
cell viability test was performed to determine the cell 
viability, and the effective Aβ(1-42) dose value was deter-
mined. In the in vitro AD model, which we created with 
Aβ(1-42) toxicity at the effective dose in HT-22 cells, the 
cells were incubated with CDELNs at concentrations of 
5–50 μg/ml for 24 hours and cell viability was determined 
after 24 hours of incubation.

Determination of relative mitochondrial membrane 
potential (ΔΨm) 

Relative ΔΨm was measured by fluorescence microscopy 
using JC-1 dye. JC-1 is a  cationic dye that selectively ac-
cumulates into the mitochondria under the effect of an 
electrochemical gradient and gives a  red color when the 
mitochondrial membrane is polarized (Esmekaya et al. 
2017). First, 1 µl of Component B was mixed with 500 µl of 
PBS. Then, 100X JC-1 stock solution (ABP Biosciences) was 
diluted 1:100 with PBS to obtain 1X JC-1 solution. 100 µl of 
Component B mixture was added into wells and cells were 
incubated at 37°C for 10 minutes in a 5% CO2 incubator. 
Then, 1X JC-1 solution was added into wells and cells were 
incubated at 37°C for 15 minutes in a 5% CO2 incubator. 
After incubation, 1X JC-1 solution was withdrawn and wells 
were washed with 100 µl of warm PBS. The samples were 
taken on a slide and viewed with a fluorescent microscope 
(Olympus).

Data analysis

All experiments were repeated five times and the data 
were presented as mean ± standard deviation (SD). The 
normality distribution of the data was determined by the 
Kolmogorov-Smirnov test. The data were analyzed by 
one-way ANOVA, followed by the Tukey HSD multiple 
comparison test. p < 0.05 was considered to be statistically 
significant.
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Results

Characterization of CDELNs 

CDELNs were isolated from homogenized coffee extracts 
using the low pH-based PEG method. The size distribution 
of CDELNs were determined using NTA. The shape and 
size distribution of CDELNs was also confirmed and visual-
ized by SEM. SEM images of coffee CDELNs showed that 
CDELNs had a homogeneous population and were mostly 
spherical in shape (Fig. 1A). The median +/− interquartile 
range diameter of CDELNs population was 48.89 ± 19.75 nm 
(Fig. 1B). Zeta potential analysis indicated that CDELNs had 
a negative zeta potential value of −23.8 ± 1.42 mV (Fig. 2). 
Zeta potential analysis, which evaluates the surface potential 
of colloidal particles, is widely used to estimate the colloidal 
stability of isolated plant-derived exosome-like nanoparti-
cles. These results demonstrated that isolated exosome from 
coffee has high purity and high stability.

Cytotoxicity results

In vitro Alzheimer’s model was created with Aβ-induced 
toxicity in HT-22 cells. HT-22 cells were incubated with 
Aβ(1-42) peptides at different concentrations (5–50 mM) for 
24 hours and cytotoxicity of cells with Aβ-induced toxicity 
was measured with WST-1. Aβ(1-42) peptides showed a dose-
dependent cytotoxic effect on cells (Fig. 3). We chose a con-
centration of 25 mM Aβ(1-42) to create an in vitro Alzheimer’s 
model. HT-22 cells were treated with 25 mM Aβ(1-42) and 
25  mM Aβ(1-42) + different concentrations of CDELNs 
for 24 hours and then, the effects of CDELNs on Aβ(1-42)-

induced toxicity were analyzed. The viability of cells treated 
with 25 mM Aβ(1-42) + different concentrations of CDELNs 
was significantly higher (p < 0.05) than the viability of cells 
treated only with 25 mM Aβ(1-42). The increase in viability 
was highest for the lowest dose of CDELNs. The viability of 
cells treated with 25 mM Aβ(1-42) + 5 μg/ml CDELNs was 
significantly higher than the viability of 25 mM Aβ(1-42) + 
10, 25 and 50 μg/ml CDELNs-treated cells (Fig. 4). 

ΔΨm results

Control and CDELNs-treated cells were stained with JC-1 to 
evaluate ΔΨm by fluorescence microscopy. The representa-
tive fluorescence microscopy images are presented (Fig. 5A). 
The red fluorescence (JC-1 aggregates) represents intact 
mitochondria, the green fluorescence (JC-1 monomers) 
represents a decrease in the ΔΨm and the yellow fluores-
cence (merged) represents damaged mitochondria. As seen 
in Figure 5A, treatment of HT-22 cells with different doses 
of CDELNs increased red fluorescence signals compared to 
control cells. CDELNs treatment caused an increase in ΔΨm. 
So, the mitochondria of CDELNs-treated cells became more 
polarized compared to the mitochondria of untreated control 
cells. These results demonstrated that CDELNs treatment 
restored the dissipated ΔΨm and improved mitochondria 
in Aβ(1-42)-neurotoxicity-induced HT-22 cells. 

Discussion

The disproportion between the production, accumulation, 
and clearance of Aβ peptides is one of the most important 

Figure 1. A. Exosome-like nanoparticles isolated from coffee extracts were imaged by scanning electron microscopy (SEM; scale bar = 
100 nm). B. The size distribution derived from images randomly selected on the SEM grid.

A B
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initial factors in the neuropathogenesis of AD (Reddy and 
Oliver 2019; Hampel et al. 2021; Knopman et al. 2021; Ono 
and Watanabe-Nakayama 2021; Sehar et al. 2022; Shi et al. 
2022). The neuronal and synaptic losses and neurotransmit-
ter deficiencies that are observed due to the accumulation of 
Aβ peptides are thought to lead to dementia by impairing 
cognitive functions (Shen and Kelleher 2007; Xia et al. 2015; 
Selkoe and Hardy 2016). In the present study, we investigated 
the possible neuroprotective effects of CDELNs against Aβ-
induced AD. HT-22 cells were exposed to Aβ(1-42) and treat-
ed with different concentrations of CDELNs (1–50 μg/ml). 
The effects of CDELNs on the viability of Aβ(1-42)-exposed 
cells were analyzed by WST-1 assay. The neuronal cell death 
induced by Aβ(1-42) was decreased due to CDELNs treat-
ment. The viability of cells treated with 25 mM Aβ(1-42) + 
different concentrations of CDELNs was significantly higher 
(p < 0.05) than the viability of cells treated only with 25 mM 
Aβ(1-42). The treatment with the lowest dose of CDELNs 
(5 μg/ml) had the highest effect on inhibition of Aβ(1-42)-
induced toxicity. These results demonstrat that treatment of 
CDELNs improves the viability of neuronal cells and protects 
them against Aβ(1-42)-induced neurotoxicity. 

The results of this study showed that CDELNs treatment 
improved mitochondria by restoring the dissipated ΔΨm in 
Aβ(1-42)-exposed cells. Mitochondria of CDELNs-treated 
Aβ(1-42)-exposed HT-22 cells showed a  lower green/red 
fluorescence ratio than mitochondria of untreated control 
cells. The lower green/red fluorescence indicates higher ΔΨm 
and polarized mitochondria. Mitochondrial dysfunction 
and bioenergetic deficits caused by Aβ aggregation may play 
a central role in the pathogenesis of AD (Chen et al. 2006; 
Spuch et al. 2012; Chaturvedi et al. 2013; Swerdlow 2018; 
Flannery and Trushina 2019; Li et al. 2020; Sharma et al. 
2021). However, the underlying mechanism of mitochon-
drial dysfunction in AD has not been clarified yet (Castel-
lani et al. 2002; Sheng et al. 2012). Some authors suggested 
that mitochondrial dysfunction related to reductions in the 
activities of mitochondrial electron transport chain (ETC) 
enzymes (especially complex I) may play an important role 
in the pathogenesis of AD (Fosslien 2001; Manczak et al. 
2004; Sharma et al. 2009; Breuer et al. 2012; Jhonson et al. 
2020; Kilbride et al. 2020, 2021). Complex I has been shown 
to be impaired and mitochondrial genes encoding complex 
I has been reported to be downregulated in AD (Fosslien 
2001; Manczak et al. 2004; Breuer et al. 2012). Because the 
entry point for most electrons into the respiratory chain is 
complex I, it plays a key role in energy metabolism (Sharma 
et al. 2009). 

ΔΨm is more susceptible to reductions in complex I ac-
tivity than reductions in the other ETC complex activities 
(Kilbride et al. 2021). The inhibition of complex I activity 
reduces the proton gradient and leads to loss of ΔΨm which 
is crucial for maintaining the viability of a neuron (Mar-

tínez et al. 2016). Dissipation of ΔΨm results in the open-
ing of the mitochondrial transition pore and the release of 
pro-apoptotic molecules into the cytosol which is an early 
event of apoptotic cell death (Nicholls and Budd 2000; Qi 
et al. 2003; Onyango et al. 2016). The increase in viability 
of CDELNs-treated Aβ(1-42)-exposed neuronal cells may be 
attributable to the ability of CDELNs to improve dissipated 
ΔΨm via restoring complex I activity by reducing the binding 
of Aß to mitochondria in the present study.

The neuroprotective effects of coffee against AD have been 
reported in the literature so far. Experimental and clinical 
studies have shown that coffee consumption may reduce the 
risk of the development and the progression of AD (Barranco 
et al. 2007; Dostal et al. 2010; Kolahdouzan and Hamadeh 
2017; Bae 2020; Colombo and Papetti 2020). Lindsay et al’s 
study (2022) showed that coffee consumption was associated 
with a 31% lower risk of AD in the Canadian population. 
The study of Maia and Mendonca (2002) reported reduced 
risk of AD by 60% due to caffeine consumption. Aβ1-40 

Figure 2. Zeta potential distribution of CDELNs (coffee-derived 
exosome-like nanoparticles). 

Figure 3. Effect of 2.5, 5, 10, 25 and 50 μM amyloid-β Aβ(1-42) on 
cell viability of HT22 cells. 
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and Aβ1-42 levels were shown to be reduced in the cortex 
and hippocampus regions due to coffee administration 
(Arendash et al. 2009). A single dose of encapsulated coffee 
concentrate increased peripheral serum brain-derived neu-
rotrophic factor (BDNF) by 91% at 60 minutes and by 66% 
at 120 minutes compared to baseline levels (Nieber 2017). 
The study of Sukumaran and Shree (2021) also reported that 
coffee extracts can alleviate the symptoms of AD.

Despite the neuroprotective role of coffee extracts against 
AD have been studied, there is no study that investigated the 
efficacy of CDELNs for the treatment of AD in the literature 
so far. We first time investigated the neuroprotective effects 
of CDELNs against Aβ-induced AD. Our results showed 
that CDELNs might be a useful neuroprotective agent for 
the treatment of Aβ-induced AD by improving ΔΨm and 
decreasing neuronal cell death. Penetration of coffee ex-
tracts through the blood-brain barrier (BBB) is low due to 
their large sizes. This limits the use of coffee extracts in AD 
treatment. On the other hand, CDELNs have small sizes and 
greater ability to penetrate BBB. They can cross the BBB by 
transcytosis likewise by immune cells and infectious agents 
(Liu et al. 2020). Due to their small sizes and great ability to 
penetrate through BBB, CDELNs may be much more effec-
tive than large-sized coffee extracts in the treatment of AD.

In the present study, the HT-22 cell line was chosen as 
a cellular model to investigate the potential neuroprotective 
effect of CDELNs against Aβ-induced AD. The results of the 
study showed that CDELNs may be used as a neuroprotec-
tive agent for the treatment or prevention of Aβ-induced 
AD. CDELNs markedly improved the viability of Aβ(1-42)-
exposed neuronal cells. The protection provided by CDELNs 
against Aβ(1-42)-induced neurotoxicity was associated with 
the reversal of mitochondrial depolarization. CDELNs sig-
nificantly restored the dissipated ΔΨm. CDELNs may bring 
an innovative perspective to the solution of AD apart from 
conventional methods. Further animal and clinical studies 

Figure 5. A. Fluorescence photographs of merged green and red channels of JC-1 staining in control (a) and 5 µg/ml (b), 10 µg/ml (c), 
25 µg/ml (d) and 50 µg/ml (e) CDELNs (coffee-derived exosome-like nanoparticles)-treated groups. B. Red/green fluorescence ratio of 
ΔΨm measurement. Data for each group was expressed as mean ± SD of five independent experiments. The experiments were performed 
in each group and samples were measured and analyzed for each experiment. * p < 0.05 vs. control group; + p < 0.05 vs. other CDELNs-
treated groups. (See online version for color figure.)

A
a

b

d

c

e

B

Figure 4. Effect of CDELNs (coffee-derived exosome-like nano-
particles) on the viability of Aβ(1-42)-induced toxicity (25 mM) 
in HT22 cells. * p < 0.05 vs. control group; + p < 0.05 vs. other 
treatment groups.
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should be carried out to investigate the treatment potential 
of CDELNs against Aβ-induced AD.
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