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AbstrAct
BACKGROUND: Diabetic Retinopathy (DR) is a widespread intense stage of diabetes mellitus that causes 
vision-effecting anomalies in the retina. It is a medical health condition on the strength of fluctuating glucose 
level in the blood that can result in vision loss in case of severity.
OBJECTIVE: As a result, early detection and treatment with DR is the most significant task which will 
tremendously reduce the likelihood of vision impairment and is still a difficult challenge. Many conventional 
methods fail to detect primary causes of formation of Microaneurysms, that are used to determine the 
Prediagnosis of DR. 
METHOD: To overcome this challenge, the proposed model incorporates Harris Hawk Optimization with 
CNN-Bi-LSTM (HHO-CBL) to extract the features. The Prediagnosis of DR has been achieved through this 
model by spotting saccular dilations, hyaline like material in the capillary aneurysm wall, kinking of vessels 
since these are the indications for the creation of microaneurysms that are spotted in the blood vessel of the 
retina. The recommended model is also used to automatically detect DR and its progression in many phases. 
Furthermore, in order to identify the severity of DR retina, we used a benchmark Kaggle APTOS dataset to train 
the HHO-CBL model.
RESULTS: Experimental results reveal that this model obtains the best classification accuracy of 96.4 % for 
an early diagnosis and 98.8 % for a five-degree classification. In addition to those results, a comparison with 
previously carried out studies has also shown that this model provides a promising solution for a successful 
Prediagnosis of DR and its staging.
CONCLUSIONS: In the current research, an innovative HHO-CBL was developed for identifying the primary 
causes that lead to the formation of microaneurysms and diagnosing all five grades of DR. According to the 
acquired results presented through the evaluation performance metrics indicates that the pre-early diagnosis 
and five grade classification using feature embedding technique outperformed the other prevailing approaches 
(Tab. 4, Fig. 10, Ref. 31). Text in PDF www.elis.sk
KEY WORDS: diabetic retinopathy, Harris Hawk optimization, kinking, hyaline structures, saccular 
dilations.
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Introduction

DR is a condition of the eye that impacts the retina in individu-
als with diabetes, resulting from damage to the tiny blood vessels 
due to high blood sugar levels shown in Figure 1 and is typically 
asymptomatic until it is advanced (1–4). 

DR develops in four main stages, ophthalmologists classify 
diabetic retinopathy (DR) into two stages (5): background retin-
opathy, also referred to as Non-Proliferative Diabetic Retinopathy 
(NPDR), and Proliferative Diabetic Retinopathy (PDR). Addition-
ally, NPDR is classified into three stages: A) Mild, B) Moderate, 
C) Severe as shown in Table 1.

Since DR is so prevalent it is necessary to design and develop 
reliable tools for its diagnosis. The use of Artificial Intelligence 
(AI) has had a significant impact on the medical industry during the 
last several decades, which has led to the development of a wide 
variety of AI-based methods for medical image interpretation 
(7). Many approaches for detecting diabetic retinopathy using 
computer vision have previously been developed.

Most of these techniques fail to reliably recognize mild stage 
(8–20). Early diagnosis of the condition is essential to forestall 
blindness and hence it is of utmost importance to detect the 
mild stage and its primary causes. In the mild stage of NPDR, 
microaneurysms occur due to local structural weakening in the 
vessel wall (21). In most cases, microaneurysms were located 
in the posterior part of the retina, approximately adjacent to the 
capillaries. In this view weakness of the vessel wall triggers 
dilations and proliferations that fallows as secondary effect. This 
study is concerned with the factors, structure, and development 
of the diabetic retinal microaneurysms. As part of our research in 
looking for causes of microaneurysms, includes saccular dilations 

mailto:sumathi.research28@gmail.com
http://www.elis.sk


197

Sathyavani ADDANKI, Sumathi D. An optimized framework for prediagnosis of diabetic retinopathy…

or capillary microaneurysms originating from retinal capillaries. 
The rise in venous pressure, which is induced by occlusion of 
thinner retinal veins, and the additional local deterioration of 
the capillary wall, which is triggered by endothelial deteriora-
tion, are the root causes of saccular dilation. Another factor that 
contributes to the development of microaneurysms is the pro-
gressive accumulation of a hyaline like material in the capillary 
aneurysm wall. Microaneurysms form initially due to a splitting 
of the capillary basement membrane. The bridge-like linkages 
are responsible for the characteristic kinking that is seen in the 
early stages of the creation of microaneurysms. This kinking is 
caused by direct pull as a consequence of retinal swelling, which 
is well-known to occur early on in Diabetic Retinopathy (22). 
So, an end-to-end deep ensemble model is proposed that detects 
the fundamental causes of initial stages and also classifies all the 
five phases of the disease.

In this research, we design a framework based on CNN models 
to solve the challenges stated below. The primary contributions of 
the proposed approach are
1) A novel architecture utilizing the CNN-Bi-LSTM algorithm 

is introduced to effectively detect pre-early-stage lesions of 
diabetic retinopathy (DR) and accurately identify the severity 
level based on a five-class classification system. For reliable 
DR grading and early diagnosis, the proposed HHO-CBL 
model incorporates a Harris Hawk optimization strategy to 
learn deep visual properties of retinal samples.

2) The proposed method is able to identify the key contributors 
to the formation of diabetic retinal microaneurysms.

3) The suggested framework identifies the earliest stage of 
Diabetic Retinopathy, before microaneurysms are formed, by 
identifying signs of saccular dilation, splitting of the capillary 
basement membrane, accumulation of a hyaline-like substance, 
and the typical kinking of blood vessels.

4) The HHO-CBL approach collaboratively utilizes the param-
eters of a CNN model to classify images for diabetic retin-

opathy (DR) analysis and evaluation. It offers the advantage 
of identifying samples through a backward-forward pass, 
resulting in modifications to the model parameters to facilitate 
the learning of lesions and images.

5) In this study, a distinct neural network architecture was 
proposed, which exhibits computational efficiency, achieves 
superior classification results, and requires relatively less 
memory and computing time.
The remaining part of this paper is categorized as: Section 2 

describes the related work; Sections 3&4 describe the Research 
gap & Motivation; Section 5 describes the materials and dataset the 
proposed methodology of diagnostic model; Section 6 describes 
the Experimental results and the outcomes of the model; Section 
7 describes the conclusion of the models.

Methodology

Channeling
Fundus image is typically referred as an RGB images. The red, 

green, and blue components will be taken from every image. When 
the structure of the retinal picture is analyzed in each channel, if the 
lesion is not found in the first channel, the process will go to the 
next channel to look for it. If the lesion is not found in the second 
channel, the process will proceed to the final channel once again.

Fig.	1.	Healthy	and	DR	affected	Retina	with	lesions	(6).

Hemorrhages

Abnormal growth
of blood vessels

Aneurysm

“Cotton wool” spots

Hard exudates

Tab.	1.	Clinical	Classification	of	DR.

Levels of DR Examination of fundus images
No DR No abnormalities 
Non-proliferative DR, Mild Microaneurysms are identified
Moderate Along with microaneurysms some hard 

exudates or bleeding spots are observed
Severe Blood vessels are blocked, new blood 

vessels are generated, retinal hemorrhages
Proliferative diabetic 
retinopathy 

Vitreous hemorrhage, retinal detachment, 
Vision Loss
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Hessian matrix
This technique was utilized to identify the image’s vascular 

(tubular) components. The vascularity of the related region is 
evaluated by taking into consideration all the eigenvalues of the 
Hessian matrix (23). These values may be computed by perform-
ing second-order partial derivatives in a horizontal, vertical, 
and diagonal direction, respectively. Therefore, tiny tubular 
geometric structures are identified in an image. A measurement 
scale that can be adjusted within a predetermined range is defined 
in the equation (1) due to the fact that vessel sizes might vary 
considerably. 

𝐹𝐹(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥𝜎𝜎𝑓𝑓(𝑥𝑥, 𝜎𝜎)                                                                                                      (1) 
   

 

𝐻𝐻 = (𝐼𝐼𝑥𝑥𝑥𝑥 𝐼𝐼𝑥𝑥𝑥𝑥
𝐼𝐼𝑥𝑥𝑥𝑥 𝐼𝐼𝑥𝑥𝑥𝑥)                                                                                                 (2) 

 
 

𝑄𝑄(𝑠𝑠 + 1) = { 𝑄𝑄𝑅𝑅ℎ(𝑠𝑠) − 𝑟𝑟1|𝑄𝑄𝑅𝑅𝑅𝑅(𝑠𝑠) − 2𝑟𝑟2𝐶𝐶(𝑠𝑠)|𝑥𝑥 < 0.5
(𝑄𝑄𝑅𝑅𝑅𝑅(𝑠𝑠) − 𝑄𝑄𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠)) − 𝑟𝑟3(𝐿𝐿𝐵𝐵 + 𝑟𝑟4(𝑈𝑈𝐵𝐵 − 𝐿𝐿𝐵𝐵))𝑥𝑥 < 0.5                                                                                         (3) 

 
 

𝑄𝑄𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠) = 1
𝑁𝑁𝑁𝑁𝐻𝐻𝐻𝐻

∑ 𝑄𝑄𝑖𝑖(𝑠𝑠)𝑁𝑁𝑁𝑁𝐻𝐻𝐻𝐻
𝑖𝑖=1                                                                                                                                            (4) 

 
 
𝑃𝑃𝐸𝐸 = 2𝑃𝑃𝐸𝐸0(1 − 𝑚𝑚

𝑀𝑀)                                                                                                                     (5) 
 

Q(s+1) =∆𝑄𝑄(𝑠𝑠) − 𝑃𝑃𝐸𝐸|𝐺𝐺𝑄𝑄𝑅𝑅𝑅𝑅(𝑠𝑠) − 𝑄𝑄(𝑠𝑠)                                                                                                                 (6) 
 

∆𝑄𝑄(𝑠𝑠) = 𝑄𝑄𝑅𝑅𝑅𝑅(𝑠𝑠) − 𝑄𝑄(𝑠𝑠)                                                                                                                      (7) 
 
 

𝑄𝑄(𝑠𝑠 + 1) = 𝑄𝑄𝑅𝑅𝑅𝑅(𝑠𝑠) − 𝑅𝑅𝐸𝐸|∆𝑄𝑄(𝑠𝑠)                                                                                                                     (8) 
 
 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚𝑀𝑀𝑀𝑀(𝐺𝐺, 𝐶𝐶𝐹𝐹) = 1

|𝐺𝐺| ∑ 𝐻𝐻(𝑅𝑅𝑅𝑅𝐹𝐹, 𝐶𝐶𝐹𝐹)𝑅𝑅𝑅𝑅𝐹𝐹∈𝐶𝐶𝐹𝐹                                                                                                                                  (9) 

 (1)

Thus, x is the position of the image pixel, f is the filter that 
was applied to the picture to extract the blood vessels, and σ is 
the standard deviation of the Gauss function that was used to cal-
culate the second order derivative of the image. The goal of this 
analysis is to determine the horizontal gradient and the vertical 
gradient that are again differentiated to obtain the second order 
derivative. Equation (2) gives the structure of the eigenvalues of 
the Hessian matrix.
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The Hessian Matrix is created by computing the four com-
ponents of the second order derivative. Consider Ix and Iy be the 
gradient of the source image in the horizontal and vertical direction 
correspondingly, and Ixx, Iyy, Ixy, Iyx, represents the second order 
derivatives. The vascularity index of a vessel may be measured by 
computing the neighbors of an x pixel that belongs to the vessel 
and using the eigenvalue of the H matrix.

In Hessian Matrix H, all the principal diagonal is set to some 
threshold value to compare the pixel values, based on their vari-
ance with respect to the principle diagonal elements threshold the 
severity of disease is diagnosed. If no major change is found in 
one channel, move to another two channels of an image. If major 
change is identified in any of the channels that image is given to 
the Harris Hawk Optimization technique for best feature selection.

Harris Hawks optimization (HHO)
After a vector matrix is generated by Hessian matrix, a so-

phisticated meta-heuristic optimization technique known as the 
Harris Hawks Optimization (HHO) technique is applied in order 
to optimally select the features as a means to enhance classifica-
tion performance and efficiency. In general, the HHO is one of 
the population-based gradients-free optimization mechanisms 
that is widely used in a variety of applications for the purpose 
of resolving challenging optimization issues (24). In addition, 
this method incorporates both the phase of exploration and the 
phase of exploitation, with the exploration phase being completed 
well before exploitation phase. At this phase, the Harris Hawks 
are able to recognize and locate their prey by using the strong 
vision they possess. It outperforms other optimization strategies 
in terms of convergence rate, efficiency, and a shorter number of 

iterations required to arrive at the best possible optimum solution. 
The Hawks and the Harris are regarded to be the best solutions 
under this process, in which each stage is related to the right prey 
for the candidate solution (25). Following the initialization of the 
parameters, the position vector of the hawks is calculated with 
the help of the following model as shown in the equation (3):
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Where, Q(s+1) indicates the following iterations of hawk’s 
position, QRb (s)indicates position of rabbit, r1, r2, r3, r4, x are 
the random numbers of (0,1), QAvp refers the average position, QRh  
hawk was chosen at random from the present population. Upper 
and Lower Bounds are denoted by UB and LB.

Next, the simulated rabbit movements are influenced by the 
random values at each iteration. When the arbitrary location has 
been established, the average distance value is calculated, taking 
into account a range of factors. In addition, the intended length 
of momentum was computed by using the lower bound in the 
rule. The components of the random scaling coefficient are also 
considered while designing new patterns for the designated areas. 
As a result, the hawks settle into the final average position shown 
in below equation (4):

𝐹𝐹(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥𝜎𝜎𝑓𝑓(𝑥𝑥, 𝜎𝜎)                                                                                                      (1) 
   

 

𝐻𝐻 = (𝐼𝐼𝑥𝑥𝑥𝑥 𝐼𝐼𝑥𝑥𝑥𝑥
𝐼𝐼𝑥𝑥𝑥𝑥 𝐼𝐼𝑥𝑥𝑥𝑥)                                                                                                 (2) 

 
 

𝑄𝑄(𝑠𝑠 + 1) = { 𝑄𝑄𝑅𝑅ℎ(𝑠𝑠) − 𝑟𝑟1|𝑄𝑄𝑅𝑅𝑅𝑅(𝑠𝑠) − 2𝑟𝑟2𝐶𝐶(𝑠𝑠)|𝑥𝑥 < 0.5
(𝑄𝑄𝑅𝑅𝑅𝑅(𝑠𝑠) − 𝑄𝑄𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠)) − 𝑟𝑟3(𝐿𝐿𝐵𝐵 + 𝑟𝑟4(𝑈𝑈𝐵𝐵 − 𝐿𝐿𝐵𝐵))𝑥𝑥 < 0.5                                                                                         (3) 

 
 

𝑄𝑄𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠) = 1
𝑁𝑁𝑁𝑁𝐻𝐻𝐻𝐻

∑ 𝑄𝑄𝑖𝑖(𝑠𝑠)𝑁𝑁𝑁𝑁𝐻𝐻𝐻𝐻
𝑖𝑖=1                                                                                                                                            (4) 

 
 
𝑃𝑃𝐸𝐸 = 2𝑃𝑃𝐸𝐸0(1 − 𝑚𝑚

𝑀𝑀)                                                                                                                     (5) 
 

Q(s+1) =∆𝑄𝑄(𝑠𝑠) − 𝑃𝑃𝐸𝐸|𝐺𝐺𝑄𝑄𝑅𝑅𝑅𝑅(𝑠𝑠) − 𝑄𝑄(𝑠𝑠)                                                                                                                 (6) 
 

∆𝑄𝑄(𝑠𝑠) = 𝑄𝑄𝑅𝑅𝑅𝑅(𝑠𝑠) − 𝑄𝑄(𝑠𝑠)                                                                                                                      (7) 
 
 

𝑄𝑄(𝑠𝑠 + 1) = 𝑄𝑄𝑅𝑅𝑅𝑅(𝑠𝑠) − 𝑅𝑅𝐸𝐸|∆𝑄𝑄(𝑠𝑠)                                                                                                                     (8) 
 
 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚𝑀𝑀𝑀𝑀(𝐺𝐺, 𝐶𝐶𝐹𝐹) = 1

|𝐺𝐺| ∑ 𝐻𝐻(𝑅𝑅𝑅𝑅𝐹𝐹, 𝐶𝐶𝐹𝐹)𝑅𝑅𝑅𝑅𝐹𝐹∈𝐶𝐶𝐹𝐹                                                                                                                                  (9) 

  (4)

Where NoHw is the total number of hawks and Qi (s) is the 
coordinates of where each hawk is at time steps. The median 
position has been calculated using the fewest number of arbitrary 
rules. This model also incorporates for exploration and exploita-
tion potentials since energy is lost in the following ways given in 
the equation (5):

𝐹𝐹(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥𝜎𝜎𝑓𝑓(𝑥𝑥, 𝜎𝜎)                                                                                                      (1) 
   

 

𝐻𝐻 = (𝐼𝐼𝑥𝑥𝑥𝑥 𝐼𝐼𝑥𝑥𝑥𝑥
𝐼𝐼𝑥𝑥𝑥𝑥 𝐼𝐼𝑥𝑥𝑥𝑥)                                                                                                 (2) 

 
 

𝑄𝑄(𝑠𝑠 + 1) = { 𝑄𝑄𝑅𝑅ℎ(𝑠𝑠) − 𝑟𝑟1|𝑄𝑄𝑅𝑅𝑅𝑅(𝑠𝑠) − 2𝑟𝑟2𝐶𝐶(𝑠𝑠)|𝑥𝑥 < 0.5
(𝑄𝑄𝑅𝑅𝑅𝑅(𝑠𝑠) − 𝑄𝑄𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠)) − 𝑟𝑟3(𝐿𝐿𝐵𝐵 + 𝑟𝑟4(𝑈𝑈𝐵𝐵 − 𝐿𝐿𝐵𝐵))𝑥𝑥 < 0.5                                                                                         (3) 

 
 

𝑄𝑄𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠) = 1
𝑁𝑁𝑁𝑁𝐻𝐻𝐻𝐻

∑ 𝑄𝑄𝑖𝑖(𝑠𝑠)𝑁𝑁𝑁𝑁𝐻𝐻𝐻𝐻
𝑖𝑖=1                                                                                                                                            (4) 

 
 
𝑃𝑃𝐸𝐸 = 2𝑃𝑃𝐸𝐸0(1 − 𝑚𝑚

𝑀𝑀)                                                                                                                     (5) 
 

Q(s+1) =∆𝑄𝑄(𝑠𝑠) − 𝑃𝑃𝐸𝐸|𝐺𝐺𝑄𝑄𝑅𝑅𝑅𝑅(𝑠𝑠) − 𝑄𝑄(𝑠𝑠)                                                                                                                 (6) 
 

∆𝑄𝑄(𝑠𝑠) = 𝑄𝑄𝑅𝑅𝑅𝑅(𝑠𝑠) − 𝑄𝑄(𝑠𝑠)                                                                                                                      (7) 
 
 

𝑄𝑄(𝑠𝑠 + 1) = 𝑄𝑄𝑅𝑅𝑅𝑅(𝑠𝑠) − 𝑅𝑅𝐸𝐸|∆𝑄𝑄(𝑠𝑠)                                                                                                                     (8) 
 
 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚𝑀𝑀𝑀𝑀(𝐺𝐺, 𝐶𝐶𝐹𝐹) = 1

|𝐺𝐺| ∑ 𝐻𝐻(𝑅𝑅𝑅𝑅𝐹𝐹, 𝐶𝐶𝐹𝐹)𝑅𝑅𝑅𝑅𝐹𝐹∈𝐶𝐶𝐹𝐹                                                                                                                                  (9) 

  (5)

The escape energy of the prey is denoted by PE the starting 
energy level is denoted by PE0 , and the maximum number of 
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 (8)

The best possible fitness value is calculated using the updated 
position. Moreover, by selecting the characteristics optimally, the 
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dimensionality of features has been minimized, and the signifi-
cance of each feature to the whole has been verified in the following 
ways equation (9):
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Where Mutuals(G, CF)signifies the mutual significance, CF 
is the common feature, ReF specifies the relevant feature, and G is 
regarded to be the chosen function with fitness value. This opera-
tion is used to determine the most optimal function to choose the 
most appropriate features, which can then be utilized for training 
the classifier (26).

HHO-CBL model
CNNs have emerged as the preferred deep learning algorithms 

for training medical images and classifying abnormalities within 
them. This preference stems from their ability to preserve crucial 
features and spatial relationships during image analysis. In the 
context of retinal images, for instance, identifying key details like 
the onset of blood vessel ruptures or the accumulation of yellow 
fluid near the macular region is of utmost significance (27).

In this network, optimized features selected from the HHO 
optimization technique are given to integrated deep architecture 
(Convolutional Neural Network and Bidirectional Long Short-
Term Memory) as shown in the (28). The developed network 
has seven convolutional layers, four max pooling layers, four 
Rectified Linear Unit (ReLU) and three Exponential Linear Unit 
(ELU) activation functions, one flattens layer, two Fully Connected 
Layers (FCLs), and one SoftMax layer. Additionally, there are two 
Bi-LSTM layers. Convolutional and pooling structures have been 
employed in the suggested architecture to extract complicated 
features from pictures. This was implemented to enhance the 
extraction accuracy. In order to investigate the temporal proper-
ties of the extracted features, the Bi-LSTM layer provides a brief 
overview of the proposed CNN-Bi-LSTM neural network. The 
proposed network has a 256 x 256 x 3pixel input size. Therefore, 
the input picture has been scaled to 256x563 before being fed into 
the proposed network. Specifically, the conv layers in the given 
network have been activated using the ReLU and ELU functions 
(29). In addition, it should be mentioned that the kernel size in the 
conv layer has been maintained at 3*3, while that in the max-pool 
layer has been kept as 2*2. Following that, output of Fully Con-
nected Layer (FC1) has been fed into two further Bi-LSTM layers, 
which are referred to as BiLSTM6 and BiLSTM7, respectively. 
It is significant noted that the output of FC5 has been flattened by 
a flatten layer before it has been provided as input to the Bi-LSTM 
layers. As a result of this, the output of FC5 has been prepared to 
serve as the input for the BiLSTM6 layer. It is required to mention 
that the state activation function and the gate activation function in 
the Bi-LSTM layers have both been retained as tanh and sigmoid, 
respectively. After an analysis of the temporal features present in 
the layers BiLSTM8 and BiLSTM9, respectively, the output of 
BiLSTM9 has been sent to an FCL FC2 for further categorization. 
Finally, the SoftMax layer determines the probability score and 
predicts the class of the test data based on the trained model. While 

training the classifier overfitting is the common issue. Thus, its 
random assignment of hyperparameters may result in overfitting, 
and the model’s performance will decline dramatically. Therefore, 
in our proposed model, we use the expertise of the Harris Hawk 
Optimizer technique to finetune parameters in order to help coun-
teract overfitting (30). In order to locate the most relevant target 
within the extensive search field, this process is implemented. 
The fundamental purpose of the training is to reduce the process 
loss function while increasing its accuracy function in diabetic 
retinopathy prediction.

Experimental setup and results

This section provides a description of the dataset, as well as 
an overview of the experimental setup and the results that were 
obtained.

Dataset summary
To evaluate the effectiveness of the proposed approach, we 

applied it to data from Kaggle’s APTOS 2019 Blind Detection 
Challenge benchmark dataset (31). In Table 2, we can see that 
various images in the collection have varying degrees of DR.

The effectiveness of a DR categorization task was assessed 
across all experiments by training and testing with the dataset 
split 8:2. Additionally, all images have been resized to 256x256 
for efficient feature computing.

Performance measures/ evaluation indicators
In order to prove that the proposed model is effective in 

identifying the DR severity level, this work employs a number of 
statistical measures, including Sensitivity (SE), Specificity (SP), 
F-measure, Accuracy, and Kappa. 

The following assessment techniques are used to report the 
findings of the aforementioned diagnostic models: The initial step 
is to implement comparison and assessment measures such as 
sensitivity, specificity, accuracy and precision as well as the F1 and 
Matthew’s correlation coefficient (MCC). Finally, the accuracy of 
the model’s classification is shown by computing the area under the 
receiver operating characteristic curve (AUC) and the ROC curve. 
These metrics have been explained in detailed below:

Experimental results
In this section experiments are detailed to present the effi-

ciency of proposed model which is the feature extraction of our 
HHO-CBL model.

Tab. 2. Summary of the Kaggle APTOS 2019 dataset challenge for 
categorizing DR severity.

Levels based on the degree of intensity  
of the condition

Samples

Normal (class-0) 1805
Mild (class-1) 370
Moderate (class-2) 999
Severe (class-3) 193
Proliferate (class-4) 295
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In this section experiments are detailed to evaluate the 
efficiency of Advanced HHO-CBL framework, the various 
studies have been carried out on the retinography dataset. In 
the following section, we showcase the objective and quantita-
tive outcomes of many studies including suggested HHO-CBL 
technique for choosing the most relevant retinal samples, 
segmenting DR candidate areas or lesions, and classifying DR 
into five severity levels. The next sections provide an in-depth 
explanation of the computational methods used to conduct 
these studies.

Experiment 1: Assessment of the model for the pre-diagnosis of 
DR

In this experiment, we show an early phase of the develop-
ment of a microaneurysm that was initially due to a splitting of 
the capillary basement membrane, saccular dilation, progressive 
accumulation of a hyaline-like material in the capillary aneurysm 
wall, and retinal swelling due to kinking of vessels. These cir-
cumstances are associated with the earliest stages of MNPDR. 
Figure 2 demonstrates splitting of blood vessels and visible capil-
lary network and blood fills the large aneurysm. Figure 3 shows 

Fig.	2.	Reflect	features	of	the	splitting	of	blood	vessels	as	well	as	a	visible	capillary	network	and	blood	filling	the	big	aneurysm.

Fig. 3. Illustrate the hyaline structures that are present in the aneurysm.
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hyaline structures of the aneurysm. However, such abnormal 
nerve fibers have been seen at early stage within the diabetic 
aneurysms. The Figure 4 depicts a capillary and a tiny vein in 
the same diabetic retina that have become interconnected like 
a bridge. There is swelling and degeneration of neural structures 
in the retina here.

From Table 3 we can show that in order to evaluate the ef-
fectiveness of the HHO-CBL system for the classification of 
pre-early diagnosis of Mild NPDR, statistical analysis of SE, SP, 
Precision, F-measure, Matthew’s correlation coefficient (MCC), 
and Accuracy were performed on 3662 photographs. As can be 
seen in the Figure 5, the pre-Early stage has an impressive 96.6 % 
accuracy after 50 epochs and produced AUC.

Experiment 2: Model assessment for DR classification
The various levels of DR, as seen in the Figure 6, are evalu-

ated and contrasted in this section. To ascertain the efficacy of the 
HHO-CBL system in categorizing each NPDR and PDR classes for 
DR diagnosis, 3,662 specialized digital retinal samples were sub-
jected to statistical analysis based on SE, SP, Precision, F-measure, 

Matthew’s correlation coefficient (MCC) and Accuracy. Table 4 
reports a marked improvement of the stated HHO-CBL architecture 
for normal class (SE: 95.4 %, SP: 98.4 % and F-measure: 99.4 %, 
and accuracy: 99 %), mild diabetes class (SE: 93.2 %, SP: 96.6 %, 

Tab. 3. Performance of the Recommended HHO-CBL Model on 3,662 Images Representing Five Dr Severity Levels and Prediagnosis Stage.

Classes Severity level SE (%) SP (%) F1-score (%) MCC (%) Kappa ACC (%)
0 Normal 95.4 98.4 99.4 95.9 92.0 99
1 MPDR 93.2 96.6 98.0 93.7 90.6 97.0
2 NPDRM 93.9 96.9 98.5 94.4 90.7 97.7
3 SPDR 94.2 97.6 99.0 94.7 91 98.0
4 PDR 95.2 98.5 99.2 95.5 91.8 98.8
5 Pre-Early 92.9 96.1 97.2 93.4 88 96.4

Fig. 4. Exhibit enlargement of the retina as well as kinking of the veins.
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Fig. 5. Epoch-Accuracy for pre-Early diagnosis using HHO-CBL 
Model.
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Fig.	6.	Classification	of	Different	Levels	of	DR	to	Normal	to	PDR	using	Proposed	Model.
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F-measure: 98 %, and Accuracy: 97.0 %) compared to moderate 
diabetes class (SE: 93.9 %, SP: 96.9 %, F-measure: 98.5 %, and 
Accuracy: 97.7 %), severe diabetes class (SE: 94.2 %, SP: 97.6 %, 
F-measure: 99.0 %, and accuracy: 98.0 %) and Proliferative DR 
(SE: 95.2 %, SP: 98.5 %, F-measure: 99.2 %, and accuracy: 
98.8 %). Figure 7 clearly demonstrated the highest accuracy with 
50 number of epochs.

Figure 8 depicts the ROC curve that was generated by our 
HHO-CBL model. The ROC curve and the AUC value both show 
how close the prediction is to being a perfect classification. This 
information is displayed in the upper left-hand corner of the ROC 
coordinate. The area under the ROC curve is represented by the 
value of the AUC. The performance of the model improves in 
proportion to the value’s proximity to 1. The Figure 9 displays an 
area under the curve (AUC) value of 0.99 for the No-DR class, 
0.96 for the Mild (MNPDR), 0.97 for the Moderate (NPDRM), and 
0.97 for the Severe (SNPDR) and Proliferative DR (PDR) classes, 
respectively. The area under the curve (AUC) is 0.96 for pre-early 
diagnosis. As a result of the fact that a morphological variation of 
the fundus pictures for the Pre-Ealy and MNPDRR grades has an 
effect on the identification of pathological structures, the AUC of 
the Pre-Ealy and MNPDRR grades DR is lower than that of the 
others with 96.00 %.

Experiment 3: Performance comparison of the proposed method 
with state of the art

In this experiment, upon comparing our model with the basic 
CNN-Bi-LSTM architecture, the results depicted in Figures 8 and 
9 reveal significantly superior accuracy achieved by our suggested 
model, surpassing the outcomes of the comparative architecture 
as shown in Figures 9 and 10.

In this experiment, we evaluated the model presented with 
the most advanced DR severity classification and demonstrated 
the efficacy of our network by classifying 3,662 photos from the 
Kaggle APTOS dataset. The results of a comparison of the per-
formance of the model developed and the models used in (16–20) 
are shown in Table 4. It can be shown from the performance as-
sessment carried out in this study that the technique that is being 
suggested is significantly more effective than the models that are 
already present in the relevant research. We similarly acquired 
a average score of 0.97 on the area under the curve (AUC), but 
our accuracy score were better than the existing work. Overall, 
we see that the potential of the proposed HHO-CBL system here 
easily outperforms the approaches.
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Fig. 7. HHO-CBL Model per epoch accuracy for DR grades.
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Fig. 9. Accuracy for Pre-Early diagnosis using Original CNN-
Bi-LSTM.

Tab. 4. Performance Comparisons with State-of-the-Art Five Severity-
Level of DR on the Test Set of Kaggle Aptos Benchmark.

Research study Precision Accuracy AUC F-score
Nahiduzzaman M et al (16) 0.96 0.92 0.98 –
Shaik NS et al (17) 0.85 0.85 0.97 0.85
Canayaz M et al (28) 0.95 0.95 – 0.95
Imran M et al (19) 0.85 0.92 0.95 –
Islam MRet al (20) 0.73 0.84 0.93 0.70
Traditional CNN-BiLSTM 00.72 0.82 0.84 0.83
HHO-CNN-Bi-LSTM 0.96 0.98 0.97 0.99
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Conclusion 

The primary objective of this research is to develop an early 
effective and reliable classification model for the severity of DR 
with limited data. In this study, a novel HHO-CBL was designed 
in order to investigate the major factors that contribute to the 
development of microaneurysms and to diagnose all five grades 
of DR. Categorizing the five levels of DR severity through color 
fundus images is difficult due to the complex structures and 
appearances of lesions. Existing research primarily focuses on 
classifying DR from mild to advanced stages, yielding promis-
ing results. Prior to inputting the fundus image into the model 
to learn distinct features, it undergoes resizing, preprocessing, 
and augmentation. The suggested model employed a Harris 
Hawk optimization approach for optimal feature selection and 
hyperparameter finetuning to overcome overfitting and extracted 
features are classified with an ensemble method of HHO-CBL. 
The proposed model was trained using 3662 photos from the 
Kaggle APTOS image benchmark. The training was successful, 
yielding substantial results in terms of SE, SP, F-measure, preci-
sion, MCC, Kappa, AUC and classification accuracy on a test 
set of 5 images, as appropriately stated in Section 6. Overall, the 
obtained results presented through the evaluation performance 
metrics indicates that the pre-early diagnosis and five grade clas-
sification using feature embedding technique outperformed the 
other prevailing approaches. 
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