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Abstract. This study aimed to identify glycosylation-related genes associated with lung adenocarci-
noma (LUAD) prognosis through comprehensive bioinformatic analysis. Glycosylation-related genes 
were identified from the Human Gene Nomenclature Committee, and LUAD prognostic genes were 
screened from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)-GSE68465 
datasets. Glycosylation risk score (GLRS) was calculated to predict LUAD prognostic risk. Samples 
were grouped into GLRS-high and GLRS-low and compared. The Tumor Immune Dysfunction and 
Exclusion (TIDE) score was computed to assess the antitumor immune escape possibility after im-
munotherapy. From 213 glycosylation-related genes, five gene signatures served as prognostic LUAD 
predictors using univariate and stepwise Cox regression analyses. GLRS-based models were constructed 
using TCGA and GSE68465 samples; their sensitivity and specificity in predicting LUAD prognosis 
were confirmed. GLRS was an independent LUAD prognostic factor and contributed to the nomogram 
to predict patient survival. High GLRS was associated with advanced tumor stage and higher mutation 
frequencies, estimate scores, and TIDE scores. GLRS-high and GLRS-low patients differed in immune 
cell infiltration and epithelial-mesenchymal transition (EMT)-related gene expression. Thus, we propose 
five glycosylation-related gene signatures to predict overall survival and prognostic risks of LUAD. Their 
regulatory roles may be related to immune invasion, immunotherapy response, mutation, and EMT. 

Key words: Glycosylation — Lung adenocarcinoma — Prognostic risk — Immune microenviron-
ment — Epithelial-mesenchymal transition

Abbreviations: DEGs, differentially expressed genes; EMT, epithelial-mesenchymal transition; FDR, 
false discovery rate; GEO, Gene Expression Omnibus; GLRS, glycosylation risk score; GSEA, gene 
set enrichment analysis; HR, hazard ratio; LUAD, lung adenocarcinoma; ROC, receiver operator 
characteristic; TCGA, The Cancer Genome Atlas; TIDE, tumor immune dysfunction and exclusion; 
TMB, tumor mutation burden; TME, tumor microenvironment.

Highlights
•	 Five	prognostic	gene	signatures	of	LUAD	were	identified	from	glycosylation-related	screening.	
•	 GLRS	constructed	by	five	gene	signatures	is	an	independent	prognostic	factor	of	LUAD.	
•	 GLRS-based	prognostic	model	and	nomogram	can	predict	LUAD	prognostic	risks.	
•	 LUAD	patients	with	high	and	low	GLRS	present	different	clinical	features,	immune	landscape,	

mutation status, and EMT-related gene expression.
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Introduction

With an estimated 1.8 million new cases and 1.5 million 
deaths per year, non-small cell lung cancer (NSCLC) 
contributes to 85% of lung cancer-related morbidity and 
mortality (Thai et al. 2021). Lung adenocarcinoma (LUAD) 
is the most common histological subtype, accounting 
for 78% of all diagnoses (Thai et al. 2021), followed by 
squamous cell carcinoma that accounts for 18% of total 
diagnoses. The 5-year survival rate of early-stage patients 
with primary and local tumors after surgical resection is 
greater than 70%; however, 75% of patients with NSCLC 
are diagnosed at the advanced stage (III/IV) (Knight et al. 
2017). In the last decade, advances in therapy have con-
tributed to improved survival, including targeted therapy 
for common driver mutations; the 2-year survival rate of 
distant metastatic NSCLC is still less than 20% (Siegel et 
al. 2021). The likely reason may be the non-universality 
of several mutations that confers beneficial therapeutic 
effects only to a  minority of patients (Puderecki et al. 
2020; Spella and Stathopoulos 2021). Recent studies have 
shown that genes and long chain noncoding RNA is many 
cancer prognostic factor including pancreatic ductal ad-
enocarcinoma, ovarian cancer, gastric cancer, lung cancer, 
glioblastoma, breast cancer, colorectal cancer (Qiu et al. 
2022), hepatocellular carcinoma (Qiu et al. 2021; Xie et al. 
2022), bladder cancer, head and neck squamous cell carci-
noma, renal clear cell carcinoma, endometrial carcinoma, 
and Cutaneous melanoma (Xie et al. 2021). However, the 
reproducibility, robustness and clinical validity of the cur-
rently developed prognostic markers remain controversial 
(Tang et al. 2017). Therefore, further development of pre-
dictive markers that can accurately identify candidates for 
targeted therapy is needed. 

Glycosylation is the covalent attachment of a monosac-
charide or glycan to selected residues of a protein; this is 
a  common but complex post-translational modification 
(Eichler 2019). Glycosylation of specific proteins is altered 
with the development of cancer and is involved in multiple 
cancer-related biological processes, including tumor cell 
communication, cell-matrix interaction, tumor angio-
genesis, and immune regulation (Pinho and Reis 2015). 
Several tumor-related glycosylated products such as cancer 
antigen 19-9 (CA19-9), CA125, carcinoembryonic anti-
gen, prostrate-specific antigen, and alpha-fetoprotein are 
secreted or shed into the bloodstream and can be used as 
biomarkers for cancer diagnosis, detection, and prognosis 
(Silsirivanit 2019; Thomas et al. 2021). Studies have ana-
lyzed glycosylation patterns in LUAD patients and found 
that N-glycosylation levels in tissues can help identify and 
predict LUAD, even at different tumor stages (Ruhaak et 
al. 2015; Lattová et al. 2020). Several studies have explored 
the relationship between glycosyltransferase (GT) expres-

sion and LUAD prognosis. For instance, Gu et al. (2004) 
found that downregulation of GalNAc-T3 expression was 
an independent factor in predicting poor prognosis and 
early recurrence of LUAD. In addition, overexpression of 
GALNT2/14 is considered to be related to poor prognosis 
of LUAD (Yu et al. 2021). Furthermore, GalNAc-T6 ex-
pression is significantly correlated with TNM staging and 
can independently predict unfavorable overall survival in 
LUAD patients (Li et al. 2016). These studies confirmed 
that abnormal expression of GT family genes may affect 
glycosylation modification and lead to tumor invasion and 
recurrence after treatment; however, comprehensive stud-
ies exploring glycosylation-related genes that may affect 
the prognosis of LUAD are still lacking. 

The present study compiled a  list of genes related to 
glycosylation from public databases and identified gene 
signatures significantly associated with LUAD prognosis. 
Based on these genes, we constructed a glycosylation risk 
score (GLRS)-dependent prognostic model and compared 
the clinical characteristics, mutation status, immune land-
scape, participating pathways, and epithelial-mesenchymal 
transition (EMT)-related gene expression in patients with 
different prognostic risks. Our study proposes novel glyco-
sylation-related genes that can be used as prognostic markers 
of LUAD and highlights potential regulatory mechanisms to 
explain their prognostic predictabilities. 

Materials and Methods

Data capturing and pre-processing

The Cancer Genome Atlas (TCGA) database was used to 
download the normalized expression matrix and clinical 
follow-up data of patients with LUAD. After excluding 
samples with lost survival information, 504 tumor samples 
and 59 normal controls were retained as the training set. 
The GSE68465 dataset from the Gene Expression Omnibus 
(GEO) (Shedden et al. 2008), that contains 442 LUAD sam-
ples and is detected on the GPL96[HG-U133A] Affymetrix 
Human Genome U133A Array platform, was used as the 
validation set for external validation. Detailed clinical in-
formation of patients from TCGA and GSE68465 cohorts is 
summarized in Table S1 and S2 in Supplementary material, 
respectively. 

Screening of glycosylation-related genes

To explore the glycosylation mechanism, the major family 
genes encoding GT were analyzed. Therefore, we obtained 
glycosylation-related genes from the Human Gene Nomen-
clature Committee (HGNC) (Mohamed Abd-El-Halim et 
al. 2021), and a list containing 213 genes was downloaded. 
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Screening of glycosylation-related differentially expressed 
genes (DEGs)

For TCGA samples, the expression profiles of LUAD and 
normal tissues were compared using limma package Version 
3.34.7 (Ritchie et al. 2015) to select DEGs. These DEGs were 
then visualized by a heatmap using R. pheatmap Version 
1.0.8 (Wang et al. 2014). By considering the intersection 
of glycosylation-related genes and DEGs, glycosylation-
related DEGs were selected using a Venn diagram for further 
analysis. 

Selection of prognostic glycosylation-related DEGs

Considering the expression data of glycosylation-related 
DEGs and survival information of TCGA-LUAD samples, 
a univariate Cox regression analysis was performed to screen 
genes associated with prognosis based on their expression 
levels. Kaplan-Meier curves were plotted to evaluate the asso-
ciation between the expression of prognostic glycosylation-
related DEGs and survival status using the R3.6.1 survival 
package Version 2.41-1 (Rizvi et al. 2018).

Generation of a GLRS-based model and performance 
verification

To identify the optimal gene set from prognostic glyco-
sylation-related DEGs, a stepwise Cox regression analysis 
was performed using the Survminer package Version 0.4.9, 
and the GLRS was then calculated based on the following 
formula:

GLRS = h0(t) * exp(β1X1 + β2X2 + ... + βnXn)

Here, β indicates the regression coefficient, h0(t) indicates 
the baseline risk function, and h(t,X) indicates the risk 
function associated with X at time t. Thereafter, the GLRS 
of each sample was calculated, and TCGA and GSE68465 
LUAD samples were assigned to GLRS-high and GLRS-low 
groups based on their respective median values of GLRS. 
Kaplan-Meier analysis was performed to assess the difference 
in prognosis between the GLRS-high and GLRS-low groups.

Prognostic independence analysis and nomogram model 
construction

The prognostic independence of GLRS and clinical character-
istics (including age, sex, pathologic TNM, and tumor stage) 
were further analyzed using univariate and multivariate Cox 
regression analyses. Independent prognostic factors were 
visualized by a forest plot. These independent prognostic fac-
tors were then incorporated to establish a nomogram model 
using the rms package Version 5.1-2 (Zhang et al. 2020) to 
predict the survival probability of patients with LUAD. 

Correlation analysis of clinical factors and GLRS

To analyze the correlation between clinical factors and GLRS, 
patients were grouped according to their clinical character-
istics, and the difference in GLRS was then compared. 

Mutation analysis

The number of mutations in each gene per sample was 
counted and sorted. The top 20 mutated genes were col-
lected and their mutation frequencies were calculated 
using the maftools package Version 2.6.05 (Zhang et al. 
2019). Furthermore, the tumor mutation burden (TMB) 
was computed and compared between GLRS-high and 
GLRS-low groups.

Correlation analysis of tumor microenvironment (TME) 
and GLRS 

Based on the expression data of TCGA-LUAD samples, 
we analyzed the proportions of 22 types of immune cells 
using CIBERSORT (Chen et al. 2018) and then compared 
differential immune cells (DICs) between GLRS-high 
and GLRS-low groups. Then, the immune score, stromal 
score, estimate score, and tumor purity were calculated 
using the estimate package (http://127.0.0.1:29606/li-
brary/estimate/html/estimateScore.html) (Hu et al. 2019) 
and the values were compared between GLRS-high and 
GLRS-low groups. 

Immune checkpoint response analysis

The Tumor Immune Dysfunction and Exclusion (TIDE) 
database was used to predict the response of LUAD patients 
to immune checkpoint therapy. The TIDE score of each sam-
ple was calculated and the values were compared between 
GLRS-high and GLRS-low groups.

Analysis of differences in EMT-related gene expression 

Glycosylation can affect EMT in pulmonary interstitial fi-
brosis and trigger tumor invasion and metastasis. Therefore, 
we generated an EMT-related gene list through published 
articles (Tao et al. 2020) and compared the differences in 
EMT-related gene expression between the two GLRS groups.

Gene set enrichment analysis (GSEA)

GSEA (Reimand et al. 2019) was used to assess whether 
a set of genes presented statistical differences between the 
two biological states. Therefore, GSEA was performed to 
analyze significantly enriched pathways among GLRS-high 
and GLRS-low groups. 

http://127.0.0.1:29606/library/estimate/html/estimateScore.html
http://127.0.0.1:29606/library/estimate/html/estimateScore.html
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Statistical analysis

DEGs between LUAD and normal samples were defined at false 
discovery rate (FDR) < 0.05 and |log2 fold-change (FC)| > 1. 
Univariate Cox regression analysis was used to screen glyco-
sylation-related DEGs associated with prognosis, and stepwise 
Cox regression analysis was applied for screening prognostic 
signatures to construct the GLRS-based model. Independent 
prognostic factors were identified using univariate and multi-
variate Cox regression analyses. Significantly different pathways 
between GLRS-high and GLRS-low groups were selected with 
|normalized enrichment score (NES)| > 1. Comparisons of 

TMB, immune score, stromal score, TIDE score, and EMT-
related gene expression between GLRS groups were performed 
by the Wilcoxon test. Statistical significance was set at p < 0.05.

Results

Screening of 50 glycosylation-related DEGs

A flowchart of this study is presented in Figure 1. The compari-
son of the expression of the genes from LUAD and normal sub-
jects from TCGA revealed 4,442 DEGs. Of these, 1,836 DEGs 

Figure 1. The design and workflow of this study. 

Figure 2. A  total of 50 glycosylation-related DEGs 
were obtained by identifying the overlap between 
glycosylation-related genes and DEGs. A. The volcano 
plot shows the upregulated and downregulated DEGs 
selected at FDR < 0.05, and |log2FC| > 1. B. The Venn 
diagram shows the intersection of glycosylation-related 
genes and DEGs. 

A B
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Figure 4. Construction of a GLRS-based model in TCGA, the efficiency of which was further validated in the GSE68465 dataset. A. The 
optimal gene set, including five gene signatures, was determined by the stepwise Cox regression analysis. B., C. Kaplan-Meier curves 
present the close relationship between GLRS and LUAD prognosis, and ROC curves were plotted to evaluate the model capability in 
predicting LUAD prognostic risks, based on TCGA and GSE68465 samples.

A

B

C

were upregulated and 2,606 were downregulated (Fig. 2A; Fig. 
S1 in Supplementary materials). We identified the genes that 
overlapped with the 213 glycosylation-related genes and selected 
50 glycosylation-related DEGs for further analysis (Fig. 2B). 

Analysis of prognostic genes

Univariate Cox regression analysis was performed on 
50 glycosylation-related DEGs, of which 10 were found to 
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correlate with LUAD prognosis with a cutoff of p < 0.05. Their 
prognostic values are shown in Figure 3A. Six of these genes 
are protective factors (hazard ratio (HR) < 1) and four are 
risk factors (HR > 1). We evaluated the association between 
the expression levels of 10 prognostic genes and survival 

status; Kaplan-Meier curves suggested that patients with high 
expression levels of ALG3 and B3GNT3 had a significantly 
unfavorable prognosis, whereas overexpression of B3GALT2, 
B3GNT8, MFNG, ST3GAL6, ST6GALNAC6, and ST8SIA1 
was associated with a better survival status (Fig. 3B). 

Figure 5. Screening of independent prognostic factors and construction of a nomogram model to predict LUAD prognosis. A., B. Screen-
ing of independent prognostic factors of LUAD using univariate (A) and multivariate (B) Cox regression analyses. C. An individualized 
nomogram model was constructed based on independent prognostic risk factors to predict 1-, 3-, and 5-year survival probabilities for 
patients with LUAD. D. Calibration curves were created to verify the performance of the nomogram model.

B

C

D

A
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Generation and validation of the GLRS-based model

By applying the stepwise Cox regression analysis, we se-
lected the optimal gene set comprising B3GALT2, ST3GAL6, 
ST8SIA1, B3GALNT1, and CHPF, which were further 
identified as gene signatures (Fig. 4A). Based on their 
regression coefficients and expression levels, the GLRS of 
samples was calculated and a GLRS-based prognostic model 
was constructed. According to the median value of GLRS, 
LUAD patients were divided into GLRS-high and GLRS-low 
groups. Survival analysis suggested that patients with a high 
GLRS had a significantly worse survival status than patients 
with a low GLRS (Fig. 4B). Prognostic model construction 
and patient grouping were also performed based on the 
GSE68465 dataset for independent external validation. We 
found that the patients from GLRS-high and GLRS-low 
groups presented significantly different survival probabilities 
(Fig. 4C). Receiver operator characteristic (ROC) curves 
were plotted based on TCGA and GSE68465 samples, and 
the area under the curves (AUCs) were found to be 0.780 and 
0.705, respectively, indicating high sensitivity and specificity 
of the GLRS-based model in predicting LUAD prognostic 
risk (Fig. 4B,C). 

Construction of an individualized nomogram model to 
predict prognosis

We further assessed the prognostic independence of the 
clinical characteristics and GLRS status in TCGA-LUAD 
samples using univariate and multivariate Cox regression 

analyses. The results identified pathological N, pathologi-
cal T, and GLRS as independent prognostic risk factors 
for LUAD (Fig. 5A,B). These factors were then incorpo-
rated to generate a nomogram model for predicting 1-, 
3-, and 5-year survival rates (Fig. 5C). We calculated the 
consistency index (C-index) for this model; the closer the 
value is to 1, the higher is the prediction accuracy of the 
model. The C-index of this nomogram model was 0.702, 
suggesting the high accuracy of this model in predicting 
LUAD prognosis. Thereafter, calibration curves were plot-
ted to verify the performance of the nomogram model. 
As shown in Figure 5D, the predicted 1-, 3-, and 5-year 
overall survival fitted well with the actual values. Thus, the 
GLRS may contribute to the superior predictive ability of 
the nomogram model.

Associations between the clinical characteristics and GLRS

We performed stratified analysis of TCGA-LUAD patients 
based on their clinical characteristics and compared the 
GLRS status among patients from different subgroups. Male 
patients had significantly higher GLRS than female patients 
(p < 0.05, Fig. 6). In addition, patients with advanced tumor 
stage and pathologic N and T stages had significantly higher 
GLRS than early-stage patients (p < 0.001, Fig. 6). 

Differences in mutations between risk groups

Gene mutation frequencies in TCGA-LUAD samples 
were calculated, and the top 20 mutated genes are shown 

Figure 6. Comparison of GLRS between patients with different clinical characteristics. * p < 0.05; *** p < 0.001; **** p < 0.0001.
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in Figure 7A. The mutation frequencies of TP53, TTN, 
MUC16, RYR2, and CSMD3 were 30% or higher, and 
the main mutation type was missense mutation. We also 
observed that mutation frequencies of these genes were 
higher in the GLRS-high group than in the GLRS-low 
group. Patients with high GLRS exhibited significantly 
higher TMB than those with low GLRS (p < 0.0001, Fig. 
7B). There was a significant positive correlation between 
TMB and GLRS (Fig. 7C).

Analysis of association between TME and GLRS

CIBERSORT was used to assess the proportion of 22 types of 
immune cells. We compared their infiltration abundance be-
tween GLRS-high and GLRS-low groups. With a cutoff of p < 
0.05, 11 DICs were obtained; the two groups showed the most 
significant differences in the infiltrations of memory B cells, 
M0 macrophages, resting dendritic cells, and resting mast 
cells (p < 0.0001, Fig. 8A). We employed the estimate algo-

Figure 7. Comparison of gene mutation frequencies and TMB between GLRS-high and GLRS-low groups. A. Top 20 mutated genes 
and their mutation frequencies in GLRS-high and GLRS-low groups. B. The TMB was compared between GLRS-high and GLRS-low 
groups. **** p < 0.0001. C. Correlation analysis indicated a positive correlation between TMB and GLRS. 

A

B C
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Figure 8. Comparison of the immune landscape, including immune cell infiltration, immune scores, and TIDE scores, between GLRS-high 
and GLRS-low groups. A. The infiltration abundances of 22 types of immune cells were evaluated by CIBERSORT and then compared 
between the two groups. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001; ns, not significant. B. By applying the estimate algorithm, 
the stromal score, immune score, estimate score, and tumor purity were evaluated and compared between the two groups. C. The TIDE 
score was compared to assess differences in immune checkpoint responses. 

Figure 9. Comparison of the expres-
sion levels of 22 EMT-related genes 
between GLRS-high and GLRS-low 
groups.

A

B

C

rithm and found that stromal, immune, and estimated scores 
were significantly higher and tumor purity was significantly 
lower in the GLRS-high group than in the GLRS-low group 
(Fig. 8B). We calculated the TIDE score to predict immune 

checkpoint response, and found it to be significantly higher 
for the GLRS-high group than for the GLRS-low group (Fig. 
8C). These results indicate that patients with different GLRS 
presented different immune landscapes. 
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Difference in EMT gene expression between risk groups

To further understand the biological significance of glycation 
disorders, we generated a list of genes related to EMT from 
published articles. Their expression levels in TCGA-LUAD 
samples were analyzed and compared between the GLRS 
groups. The results suggest that among 22 EMT-related 
genes, 17 showed significant expression differences between 
the two groups (Fig. 9). Thus, there seems to exist a poten-
tial relationship between EMT and glycosylation in LUAD 
prognosis. 

Difference in enriched pathways between risk groups

By applying GSEA, we screened 16 significantly different 
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways between GLRS-high and GLRS-low groups at selection 
thresholds of nominal p  < 0.05 and |NES| >  1 (Table  1). 
Eight KEGG pathways related to the GLRS-high group were 
mainly involved in DNA repair, while eight pathways related 
to the GLRS-low group were mainly related to metabolism. 

Discussion

Asn-linked N-glycosylation and Ser/Thr-linked O-glyco-
sylation are two modalities of galactosylation. Abnormal 
glycosylation detected in tumor cells is often associated 
with adverse outcomes in cancer patients, and GT plays an 
important role in the synthesis of glycans and the promo-

tion of tumor metastasis (Fu et al. 2016) . Considering the 
potential effects of GT in LUAD metastasis and recurrence, 
we identified 213 GT family genes. We exploited the clinical 
information of TCGA samples to identify a gene set contain-
ing five gene signatures that significantly correlated with 
the prognosis of LUAD using univariate and stepwise Cox 
regression analyses. ROC curves also indicated that the prog-
nostic model constructed based on these five genes had high 
sensitivity and specificity for predicting LUAD prognosis in 
both the TCGA training set and the GSE68465 validation set. 
As an independent predictor, GLRS contributed in predicting 
the 1-, 3-, and 5-year survival probabilities for patients with 
LUAD in the nomogram model. Furthermore, patients with 
higher GLRS were mainly in the advanced tumor stage and 
had higher gene mutation frequencies and lower survival. 
These results are consistent with the clinical reality because 
patients with advanced tumors face more severe survival 
challenges (Kuhn et al. 2018) . Our observations further 
indicate that GLRS is reliable in predicting the prognosis of 
LUAD and that the prognostic value of the five gene signa-
tures is more definite.

The five gene signatures we identified include B3GALT2, 
ST3GAL6, ST8SIA1, B3GALNT1, and CHPF. Of these, 
B3GALT2 belongs to the family of GT that may affect the 
prognosis of LUAD through methylation-related molecular 
mechanisms (Meng et al. 2021). ST3GAL6 encodes sialic acid 
transferase, and the activity in its promoter region is nega-
tively correlated with tumor size, lymph node metastasis, dis-
tant metastasis, and tumor stage (Hu et al. 2019). ST3GAL6 
was found to be an excellent prognostic predictor of LUAD 

Table 1. Enriched KEGG pathways of GLRS-high and GLRS-low groups

Terms Size ES NES NOM p value GLRS
KEGG_SPLICEOSOME 114 0.53633744 2.1494124 0 high
KEGG_CELL_CYCLE 118 0.661843 2.0438285 0 high
KEGG_DNA_REPLICATION 36 0.7265612 1.8697815 0.00209205 high
KEGG_MISMATCH_REPAIR 23 0.68897027 1.9233372 0.004065041 high
KEGG_HOMOLOGOUS_RECOMBINATION 26 0.69105154 1.7048123 0.012219959 high
KEGG_P53_SIGNALING_PATHWAY 67 0.4916378 1.7475405 0.01713062 high
KEGG_NUCLEOTIDE_EXCISION_REPAIR 44 0.48294634 1.747494 0.041322313 high
KEGG_BASE_EXCISION_REPAIR 33 0.52697057 1.7044103 0.04831933 high
KEGG_GNRH_SIGNALING_PATHWAY 100 −0.5272094 −1.8053851 0 low
KEGG_FC_EPSILON_RI_SIGNALING_PATHWAY 78 −0.5531674 −1.750391 0.006097561 low
KEGG_ALPHA_LINOLENIC_ACID_METABOLISM 18 −0.6991381 −1.5868899 0.012958963 low
KEGG_ETHER_LIPID_METABOLISM 32 −0.56197333 −1.5557991 0.03177966 low
KEGG_ARACHIDONIC_ACID_METABOLISM 57 −0.56098104 −1.4829572 0.037037037 low
KEGG_GLYCEROPHOSPHOLIPID_METABOLISM 76 −0.40054628 −1.4754204 0.03956044 low
KEGG_FATTY_ACID_METABOLISM 40 −0.51944405 −1.5524104 0.040899795 low
KEGG_MAPK_SIGNALING_PATHWAY 265 −0.37193426 −1.4349014 0.04208417 low

KEGG, Kyoto Encyclopedia of Genes and Genomes; GLRS, glycosylation risk score; ES, enrichment score; NES, normalized enrichment 
score; NOM, nominal.
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by affecting metabolic pathways (Ma et al. 2021). These 
findings are consistent with our results, and B3GALT2 and 
ST3GAL6 both showed significant prognostic associations 
for LUAD prognosis. Higher expression levels of B3GALT2 
and ST3GAL6 indicated lower prognostic risks in patients, 
and these genes may be regulated at their promoter regions 
to inhibit tumor cell growth and metastasis. In addition, 
we found that another galactosyl transferase family gene, 
B3GALNT1, is a  prognostic risk factor for LUAD. Based 
on its protein structure, Umeyama et al. (2014) speculated 
that B3GALNT1 is a potential key gene mediating NSCLC 
metastasis. This finding provides a  basis for B3GALNT1 
as a potential drug treatment target, as downregulation of 
B3GALNT1 expression can inhibit tumor metastasis and 
consequently reduce the prognostic risk of recurrence in 
patients with LUAD. 

The infiltration of key immune cells was compared among 
patients with different prognoses, and the results indicated 
that the proportion of memory B cells, resting dendritic cells, 
and resting mast cells significantly decreased in the GLRS-
high group, whereas the infiltration of M0 macrophages 
significantly increased in GLRS-high patients as compared 
to that in GLRS-low group. Liu et al. (2017) evaluated tumor-
infiltrating immune cells in 492 LUAD patients and found 
that memory B  cell loss or M0 macrophage proliferation 
was associated with poor prognosis in early LUAD, which is 
highly consistent with our results. Another study indicated 
that the affinity maturation process of B cells depends on 
the selection of N-glycosylation sites (Koers et al. 2019). In 
addition, there is extensive N-glycosylation in the B cell re-
ceptor variable domain during the process of B cell response 
that plays an important role in autoimmunity (Vergroesen 
et al. 2019). Furthermore, M0 macrophages are considered 
to have the potential to polarize into the M2 phenotype 
and act as an antitumor immunosuppressive factor in lung 
cancer (Pritchard et al. 2020). Hu et al. found an increase in 
the proportion of M0 in lung cancer samples as compared 
to that in paracarcinoma samples (Hu et al. 2020). Both 
O-GlcNAcylation and extracellular glycosylation are thought 
to be involved in the tumor-related macrophage function 
and polarization (Mantuano et al. 2019). Therefore, we can 
speculate that glycosylation may increase the prognostic risk 
of LUAD by regulating tumor immune invasion and activat-
ing tumor cell regeneration and metastasis. TIDE score is 
used to assess tumor immune evasion and has been found 
to be more accurate than programmed death ligand 1 (PD-
L1) expression and TMB in predicting survival outcomes in 
cancer patients treated with immune checkpoint blockade 
(Kaderbhaï et al. 2019; Keenan et al. 2019). The TIDE score 
also reflects T lymphocyte dysfunction and immunosuppres-
sive factor rejection (Wang et al. 2020). Our results suggest 
that the TIDE score increased in patients with high GLRS, 
probably owing to the activation of an antitumor immune 

escape mechanism that resulted in a reduced response to 
immune checkpoint blockade therapy and adverse clinical 
outcomes.

EMT is a developmental process where tumor cells are 
reactivated and lose polarity and adhesion to epithelial cells, 
leading to cell migration and mesenchymal phenotypic 
transformation. This phenomenon is supported by abnormal 
glycosylation and hyper O-GlcNAcylation (Da Fonesca et al. 
2016; Carvalho-Cruz et al. 2017). In this study, EMT-related 
genes were differentially expressed between GLRS-high and 
GLRS-low groups, suggesting that the prognostic value of 
glycosylation-related genes may be associated with EMT in 
tumor progression. The overexpression of BIRC5 was sig-
nificantly associated with poor overall survival in patients 
with LUAD (Cao et al. 2019). BIRC5 also rapidly responds 
to N-glycation inhibition under endoplasmic reticulum 
stress (Maldonado-Agurto et al. 2019). TWIST1 is another 
EMT-related gene that is significantly overexpressed in the 
high prognostic risk group. TWIST1 is a transcription fac-
tor of EMT that is essential for oncogene-driven NSCLC 
tumorigenesis (Yochum et al. 2017). Co-overexpression of 
HIF-1α and TWIST1 is considered as a  predictive factor 
for tumor recurrence in NSCLC patients, and HIF-1α can 
regulate TWIST1 to promote tumor metastasis (Hung et al. 
2009). In the present study, the level of HIF1A significantly 
increased in GLRS-high samples. Interestingly, TWIST1 
expression can be activated by galectin-4, and parallel 
changes in galectin-4 and O-glycosylation facilitate progeny 
renewal in distal tumors, leading to more aggressive cancers 
(Tsai et al. 2016). Regulation of HIF1A by O-GlcNAcylation 
also affects glycolytic metabolism and survival stress signal 
transduction in cancer cells (Ferrer et al. 2014). Therefore, 
abnormal expression of these genes may be involved in the 
regulation of glycation and glycolysis metabolism under 
EMT activation of tumor cells, leading to tumor metastasis 
and adverse clinical outcomes in patients with LUAD.

The lack of experimental validation is a clear limitation of 
this study. How candidate genes affect the prognosis of LUAD 
through glycosylation modification and the involvement of 
immune cell infiltration in this process remain unknown. 
Therefore, collection of clinical solid tumor samples and 
evaluation of the underlying mechanism are warranted to 
compare the differences in glycosylation patterns and im-
mune regulatory pathways in tumor tissues under different 
prognostic risks.

Conclusion

We identified five gene signatures, B3GALT2, ST3GAL6, 
ST8SIA1, B3GALNT1, and CHPF, that form a  glycosyla-
tion-related gene set and constructed GLRS-based and 
nomogram models to predict the prognosis of LUAD. High 
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GLRS was associated with advanced tumors, high TMB, and 
high TIDE score. There were also significant differences in 
immune cell infiltration and EMT-related gene expression 
between GLRS-high and GLRS-low groups. Our findings 
provide a broader perspective for exploring the recurrence 
and metastasis of tumors associated with glycosylation 
modification in LUAD. 
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