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ABSTRACT
Non-invasive diabetes detection refers to the utilization and development of technologies and methods 
that can monitor and diagnose diabetes without requiring invasive procedures, namely invasive glucose 
monitoring or blood sampling. The objective is to provide a more convenient and less burdensome approach 
to screening and management of diabetes. It is noteworthy that while non-invasive method offers promising 
avenues for diabetes detection, they frequently require validation through clinical studies and might have 
limitation in terms of reliability and accuracy than classical invasive approaches. In recent times, deep 
learning (DL) and feature selection (FS) are used to monitor and diagnose diabetes accurately without 
requiring invasive procedures. This technique combines the FS method with the DL algorithm for making 
accurate predictions and extracting relevant features from non-invasive data. This article introduces a new 
Binary Fire Hawks Optimizer with Deep Learning-Driven Non-Invasive Diabetes Detection and Classifi cation 
(BFHODL-NIDDC) technique. The major intention of the BFHODL-NIDDC technique focuses on the 
involvement of non-invasive procedures for the detection of diabetes. In the BFHODL-NIDDC technique, 
data preprocessing is initially performed to preprocess the input data. Next, the BFHO algorithm chooses an 
optimal subset of features and improves the classifi er results. For the identifi cation of diabetes, multichannel 
convolutional bidirectional long short-term memory (MC-BLSTM) model is used. At last, the beetle antenna 
search (BAS) algorithm is used for the hyperparameter selection of the MC-BLSTM method which in turn 
enhances the detection performance of the MC-BLSTM model. A series of simulations were conducted on 
the diabetes dataset to assess the diabetes detection performance of the BFHODL-NIDDC technique. The 
experimental outcomes illustrated better performance of the BFHODL-NIDDC method over other recent 
approaches in terms of different metrics (Tab. 4, Fig. 9, Ref. 23). Te  xt in PDF www.elis.sk
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Introduction

Data-driven and data science methods are transforming the 
healthcare industry and chronic diseases were controlled, that in-
cludes the utility of treatment technologies, monitoring, and detec-
tion (1). This can be supported by the adoption of wearable gadgets 
with sensing abilities. Using existing studies on the quantifi ed self 
and health tracking, it is possible to offer live analysis of personal 
healthcare data (2). Diabetes management was an interesting use 
case in this context, given the signifi cance of presenting timely 
and precise feedback, observing and diagnostic tool to healthcare 
providers and patients (3). Indeed, various researches have solved 
the diffi culties of controlling the various aspects of diabetic condi-
tions, by utilizing wearable gadgets as sources of datasets. But the 
growth of data-driven methods relies on the presence of a dataset 
that is utilized for training, automated learning or validation (4). 

Such a dataset is required not just in controlled and clinical en-
vironments (for example monitoring during a hospital stay), but 
even in day-to-day living conditions.

In the past, various works were conducted for glucose mea-
surement (5). It is minimally invasive, invasive, or non-invasive. 
There were numerous attempts for continuous glucose monitoring 
depending on the non-invasive method (6). It depends on non-op-
tical and optical approaches. Few optical approaches used depend 
on the PPG method, Raman Spectroscopy, NIR spectroscopy etc. 
After the data acquisition from sensors, various scholars focused 
to devise the optimized computing method for forecasting the glu-
cose level accurately (7). Non-invasive diabetes recognition uti-
lizing deep learning (DL) and machine learning (ML) algorithms 
has acquired signifi cant attention as a promising algorithm for 
convenient and accurate recognition and monitoring of diabetes. 
By examining non-invasive measurements and using the power 
of advanced methods, this algorithm has the potential for mini-
mizing the reliance on invasive processes, like blood sampling, 
while presenting timely and reliable diabetes assessments (8). ML 
methods like RF, DT, or SVM can be implemented for training 
methods with the use of the collected non-invasive dataset. Such 
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methods learn relationships and patterns in the data, allowing the 
classifi cation of individuals into non-diabetic or diabetic groups 
(9). DL approaches that include deep neural network (DNN), con-
volutional neural networks (CNN), or recurrent neural network 
(RNN), were utilized to further enhance diabetes detection. DL 
approaches can capture intricate patterns and learn complicated 
representations in the non-invasive dataset, resulting in improved 
performance and accuracy (10).

This article introduces a new Binary Fire Hawks Optimizer 
with Deep Learning-Driven Non-Invasive Diabetes Detection and 
Classifi cation (BFHODL-NIDDC) technique. In the BFHODL-
NIDDC technique, data preprocessing is initially performed to 
preprocess the input data. Next, the BFHO algorithm chooses an 
optimal subset of features and improves the classifi er results. For 
the identifi cation of diabetes, multichannel convolutional bidirec-
tional long short-term memory (MC-BLSTM) model is used. At 
last, the beetle antenna search (BAS) algorithm is used for the hy-
perparameter selection of the MC-BLSTM method which in turn 
enhances the detection performance of the MC-BLSTM model. 

Related works

In (11), the concentration of acetone in the exhaled breath was 
examined to fi nd type 2 diabetes. A novel sensing module contain-
ing an array of sensors was applied to monitor the acetone concen-
tration for detecting diseases. DL methods like CNN are utilized 
to automatically inspect clinical data to make predictions. A deep 

hybrid Correlational NN (CORNN) was applied and devised in this 
study for analysing the sensor signals for generating predictions. In 
(12), the authors developed CSA-driven DBN for DME classifi ca-
tion. In this technique, OCT images were considered for the poten-
tial classifi cation of the DME process. Likewise, the DBN method 
was implemented for categorizing the DME-affected region or 
images of OCT as normal ones. The GAN method was trained by 
CSA such that the effi cacy of classifi cation was improved. 

Reddy et al (13) presented a new method to identify DM that 
can be non-invasive. The presented work considers the digital 
imageries of the retina as inputs. The concentration is on fi nding 
the chaotic geometric attributes formed during feature extraction, 
because of the numerous non-uniform alignments of thin blood 
vessels in the images. Islam et al (14) introduce an autonomous 
software module with a GUI that depends on ANN and digital 
signal processing (DSP) to distinguish, process, and categorize 
BGL signs from ultra-wideband (UWB) signals captured using 
human blood medium. 

In (15), the authors present a potential prediction method for 
diabetes mellitus classifi cation via Deep 1D-CNN values. The out-
lier detection has been leveraged to remove missing values. Next, 
SMOTE was utilized to minimize the effect of the imbalance class 
on predictive outcomes. Eventually, forecasts are made utilizing 
a DCNN method and can be assessed through a particular set of 
evaluation indicators. Munadi et al (16) introduce a new structure 
for DFU classifi cation that depends on thermal imaging utilizing 
decision fusion and DNN. 

Fig. 1. Overall process of BFHODL-NIDDC approach.
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Abdulhadi and Al-Mousa (17) mainly forecast the existence 
of diabetes especially in females-at an initial phase via various 
ML approaches. Early recognition of diabetes could prevent the 
development of the disease and lessen the risk of severe compli-
cations like kidney and heart diseases, which makes the proper 
lifestyle variations timely and can help avoid diabetes. So, there 
comes a vital demand for tools that could better help clinicians for 
identifying this disease at an initial stage and thus stop its develop-
ment. In (18), the authors presented a new diabetes categorizing 
method that depends on Conv-LSTM that was not implemented. 
The author implemented another three popular methods like CNN-
LSTM, and Traditional LSTM (T-LSTM), and the performance 
was compared with the advanced method over Pima Indians Dia-
betes Database (PIDD). 

The proposed model

In this study, an automated non-invasive diabetes detection 
model, named the BFHODL-NIDDC technique has been devel-
oped. The major intention of the BFHODL-NIDDC technique fo-
cuses on the involvement of non-invasive procedures for detecting 
diabetes. In the BFHODL-NIDDC technique, several stages of 
operations were carried out namely preprocessing, BFHO-based 
feature selection, MC-BLSTM-based classifi cation, and BAS-
based parameter tuning. Figure 1 represents the overall process 
of the BFHODL-NIDDC approach.

Feature selection using BFHO algorithm
At this stage, the BFHO technique is used to select an optimal 

set of features. In this stage, the proposed FS technique based on 
an improved version of FHO is presented (19). The proposed FS 
model termed BFHO begins by splitting the datasets into testing 
and training sets. Next, it makes use of the training sets to search 
for the applicable features, and the procedure starts by constructing 
the population of N solutions to calculate the fi tness values (FV). 
Then, it assigns the fi ttest solution and exploits it with operator of 
FHO for updating the population X. The next stage was to choose 
the applicable attributes from the testing sets. The steps of the FS 
approach are shown below.

Initially, the social data is split into testing and training in-
stances. Next, the population X with N solutions was produced, 
and solution Xi,i = 1,2,..., N has D dimensional, and Xi value is 
represented as follows:

Xij = Lj + r1 x (uj - Lj), i = 1,2, ...,D (1)

In Eq. (1), uj  and Lj signify the maximal and minimal values 
at the jth dimensions in the search space.

The operator of adapted FHO updated the population X. The 
process initiates by transforming all the Xi into Boolean form 
based on Eq. (2):

 
(2)

Later, the feature of the training set that is respective to one in BXij 
is chosen and estimated by the subsequent FV (Fiti).

 
(3)

Where  - indicates the weighted parameter to balance 
among the dual parts of Eq. (3),γ shows the classifi er error attained 
by the KNN classifi ers with trained set.  and D denote the 
amount of FSs and the overall amount features from the database, 
correspondingly. The next procedure is to defi ne the fi ttest solution 
Xb  that has optimum Fitb. Next, update solution X by the operator 
of the FHO. The updating step was performed until the stopping 
condition is met. Figure 2 represents the steps involved in BFHO.

Here, the feature of the testing set that corresponds to one in 
the better solution Xb is chosen for evaluating the quality. This can 
be attained by the similar FV determined in Eq. (3). Next, calcu-
late the quality of estimated output by performance measure. The 
proposed FS method based on BFHO is shown in Algorithm 1.

Algorithm 1: The FS based on the BFHO technique
Input: iteration counts, number of solutions (N), and social data has 
D features, (tmax), and parameters of FHO.
First Stage
Divide the data as training and testing sets.
Produce population X 
Second Stage
Allocate T = 1.
 while (t < tmax) do

Produce the Boolean form of Xi by using Eq. (2).
Compute FV of Xi depends on training sample shown in Eq. (3).
Determine the fi ttest solution Xb that has small FV.
Upgrade X.
t = t + 1.

End while
Third Stage
Choose the feature of the testing set that is equivalent to one in Xb. 
Calculate the quality of estimated outcome.

Fig. 2. Steps involved in BFHO.
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Diabetes detection using MC-BLSTM model
In this work, the MC-BLSTM approach was utilized for dia-

betes detection. The dual-channel convolution was provided by 
the normalized trained sample as part of pretraining. In the earlier 
stage of pretraining, the predictive model creates a huge loss (20). 
As a result, an optimizer is used for mitigating these losses and 
also improving the accuracy that changes the module features. 
Therefore, the module becomes updated after all the iterations of 
the pretraining. But the basic element of the dual channel convo-
lution BLSTM model is “Conv Block” which comprises 2 succes-
sive 1 - D Conv, Max -  poollayer, and dropout layers, along with 
“BLSTM Block”, which comprises of BLSTM, max -pooling, and 
dropout layer. Furthermore, concatenation, fl attening, and dense 
layers are used in this work.

In the dual-channel convolutional BLSTM model, four succes-
sive “Conv Blocks” are applied for all the data channels to remove 
spatial features. The Max pooling layer with a pooling size of 2 is 
utilized for pooling higher contrasting data in the mapping feature 
that results in the down-sampling of the mapping feature sizes. 
During training a dropout layer with 0.2 is utilized for resolving 
the over-fi tting problems. In the entire 1D convolution layer, the 
ReLu function is used. Here, four BLSTM block was used for ex-
tracting and learning temporal features. Furthermore, a dropout 
layer and Max pool layer with similar dimensions is inserted in 
the “BLSTM Block”. But BLSTM layers are the expanded version 
of classical LSTM layers but both LSTMs are used for extracting 
temporal features in forward (from past to future) or backward 
(from future to past) directions. The respective output h (t) of the 
LSTM layer was evaluated for the concatenated multi-feature sig-
nal x (t) at t time, as follows:

 (4)
 (5)

 (6)
 (7)

 (8)

Where c(t) shows the internal state of LSTM. f(t), i(t), and o(t) 
represent the forget, input, and output gates of the LSTM cells, 
correspondingly. Here, h(t) and h(t) indicate the cell state value of 
both LSTMs generated in N sequential input and are functioned in 
both directions, correspondingly, the output response of BLSTM 
was formulated by Eq. (9):

 (9)

Where g(.) represent respective activation function.

Hyperparameter tuning using BAS
The BAS is used to adjust the hyperparameter value of the MC-

BLSTM network. The BAS method stimulates these processes, and 
it could accomplish effective optimization, without prior knowl-
edge regarding the certain procedure of function and its gradient 
(21). Also, it needs only one individual which has a signifi cant 
effect on reducing the computation diffi culty. This method is used 

for enhancing the computational effi cacy of the backpropagation 
(BP) method in NNs and helps it discover the global optimum 
solution with highest probability, by defi ning the hyperparameter.

This new metaheuristic has proved promising outcomes on 
real-time optimization problems. It is used to enhance the BPNN 
model for predicting gas explosion pressure. Also, it is used to 
resolve other optimization problems including path planning for 
intelligent fault diagnoses of wind turbine rolling bearings, and 
conditioning optimization of extreme learning machines and mo-
bile robots with collision-free ability.

Consider the location of beetles as a vector xt at time (t = 
1,2,...) and determines the odor intensity at location  x using FF 
(x). The maximal value of the f(x) marks the odor source. Then, 
BAS model exploits 2 rules stimulated by beetle utilizing anten-
nae to randomly explore and search an unfamiliar environment.

 

 
(10)

In Eq. (10), k shows the dimension of the location and rnd 
refers to the random function. Then, the search behavior of the 
left and right antenna correspondingly is modelled using Eqs. 
(11) & (12)

 (11)

 (12)

Where xl and xr represent the position positioned on the left 
and right side of the search space, correspondingly. d denotes the 
sensing range of antenna and relates to the exploit capability that 
should be larger to cover a suffi cient search space to escape from 
the local minimal point at the beginning and later attenuates as 
time elapse.

The detection behaviors are expressed by the iteration meth-
od that relates the recognition of odor by considering the search 
behaviours:

 (13)

In Eq. (13), sign() denotes the sign function, and δ signifi es 
the step size of all the iterations. The search parameters including 
antenna length d and step size δ, are upgraded based on the rule 
provided by the following equations:

 (14)
 (15)

Fitness choice is a major as pect of the BAS methodology. An 
encoder solution can be utilized for measuring better candidate 
outcomes. The accuracy value is the crucial condition used to 
propose the FF. 

Fitness = max (P) (16) 
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(17)

Where TP and FP exemplify the true and false positive values.

Results and discussion

In this section, the diabetic detection outcomes of the BF-
HODL-NIDDC method can be validated using the non-invasive 
diabetes dataset. It includes 768 samples with two classes as de-
fi ned in Table 1.

In Figure 3, the confusion matrices of the BFHODL-NIDDC 
method are clearly illustrated for diabetic classifi cation. The out-

comes highlighted that the BFHODL-NIDDC method properly 
identifi ed the diabetic and non-diabetic samples.

In Table 2 and Figure 4, a comprehensive diabetes detection 
result of the BFHODL-NIDDC technique is provided. The results 
implied that the BFHODL-NIDDC technique effectually classi-
fi es the diabetic and non-diabetic samples. On 80 % of TRP, the 
BFHODL-NIDDC technique provides average accuy of 94.92 %,  
precn of 97.09 %, recal of 94.92 %, Fscore of 95.85 %, and AUCscore of 
94.92 %. At the same time, on 20 % of TSP, the BFHODL-NIDDC 
method provides average accuy of 93.48 %, precn of 97.37 %, recal 
of 93.48 %, Fscore of 95.16 %, and AUCscore of 93.48 %.

Figure 5 examines the accuy of the SCSOFS-HDL system in 
the training and validation procedure on 80:20 of TRP/TSP. The 
fi gure indicates that the SCSOFS-HDL method attains maximum 
accuy values over the highest epochs. Furthermore, the maximum 
validation accuy over training accuy shows that the SCSOFS-HDL 
system effi ciently learns on 80:20 of TRP/TSP. 

The loss outcome of the SCSOFS-HDL algorithm in training 
and validation is shown on 80:20 of TRP/TSP in Figure 6. The out-

Class No. of Samples
Diabetic 268
Non-Diabetic 500
Total Samples 768

Tab. 1. Details of datasets.

Fig. 3. Confusion matrices of BFHODL-NIDDC approach (A–B) 80:20 of TRP/TSP and (C–D) 70:30 of TRP/TSP.

A B

C D
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come shows that the SCSOFS-HDL methodology obtains nearby 
values of training and validation loss. The SCSOFS-HDL system 
effi ciently achieves 80:20 of TRP/TSP.

In Table 3 and Figure 7, comprehensive diabetes detection 
outcomes of the BFHODL-NIDDC technique are provided. The 
results implied that the BFHODL-NIDDC technique effectually 

classifi es the diabetic and non-diabetic samples. On 70 % of TRP, 
the BFHODL-NIDDC method provides average accuy of 93.93 %, 
precn of 94.90 %, recal of 93.93 %, Fscore of 94.38 %, and AUCscore 
of 93.93 %. At the same time, on 30 % of TSP, the BFHODL-NI-
DDC method provides average accuy of 92.51 %, precn of 93.70 
%, recal of 92.51 %,  Fscore of 93.07 %, and AUCscore of 92.51 %.

Figure 8 examines the accuy of the SCSOFS-HDL system 
in the training and validation method at 70:30 of TRP/TSP. The 
fi gure indicates that the SCSOFS-HDL system attains maximum 
accuy values over the highest epochs. Furthermore, the maximum 
validation accuy overtraining accuy shows that the SCSOFS-HDL 
method effi ciently learns at70:30 of TRP/TSP. 

The loss outcome of the SCSOFS-HDL algorithm in training 
and validation is on 70:30 of TRP/TSP. The outcome indicates 
that the SCSOFS-HDL approach accomplishes nearby values of 
training and validation loss. The SCSOFS-HDL system effi ciently 
gains at70:30 of TRP/TSP.

Finally, an extensive comparative study of the BFHODL-NI-
DDC technique with existing approaches in Table 4 and Figure 9 

Class Accuy Precn Recal Fscore AUCscore

Training Phase (80%)
Diabetic 90.09 99.50 90.09 94.56 94.92
Non-Diabetic 99.74 94.67 99.74 97.14 94.92

Average 94.92 97.09 94.92 95.85 94.92
Testing Phase (20%)

Diabetic 86.96 100.00 86.96 93.02 93.48
Non-Diabetic 100.00 94.74 100.00 97.30 93.48

Average 93.48 97.37 93.48 95.16 93.48

Tab. 2. Diabetes detection outcome of BFHODL-NIDDC method on 
80:20 of TRP/TSP.

Fig. 4. Average outcome of BFHODL-NIDDC methodology on 80:20 
of TRP/TSP.

Fig. 5. Accuy curve of BFHODL-NIDDC approach on 80:20 of TRP/
TSP.

Fig. 6. Loss curve of BFHODL-NIDDC method on 80:20 of TRP/TSP.

Fig. 7. Average outcome of BFHODL-NIDDC method on 70:30 of 
TRP/TSP.
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(22, 23). The simulation values achieved enhanced performance 
over other models. The experimental values highlighted that the 
LR, RF, and DT models have gained poor performance. Along with 
that, the Dense-NN model attains improved results whereas the 
CNN-LSTM, XGB Regression, and Bi-LSTM models obtain de-
creased performance. However, the BFHODL-NIDDC technique 
confi rms superiority with a maximum accuy of 94.92 %, precn of 
97.09 %, recal of 94.92 %, and Fscore  of 95.85 %. These outcomes 
make sure the superior outcome of the BFHODL-NIDDC approach 
over other methods.

Conclusion 

In this article, an automated non-invasive diabetes detection 
model, named the BFHODL-NIDDC technique has been devel-

oped. The major intention of the BFHODL-NIDDC technique 
concentrations on the involvement of non-invasive procedures 
for diabetes detection. In the BFHODL-NIDDC technique, sev-
eral stages of operations were carried out namely preprocessing, 
BFHO-based feature selection, MC-BLSTM-based classifi cation, 
and BAS-based parameter tuning. Finally, the BAS algorithm is 
used for the hyperparameter selection of the MC-BLSTM ap-
proach which in turn enhances the detection performance of the 
MC-BLSTM model. A sequence of simulations can be conducted 
on the diabetes dataset to assess the diabetes detection performance 
of the BFHODL-NIDDC technique. The experimental outcomes 
illustrated better performance of the BFHODL-NIDDC method 
over other recent approaches in terms of different metrics. In fu-
ture, a data clustering procedure was incorporated to improve the 
outcome of the BFHODL-NIDDC technique.
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