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We aim to identify novel molecular signatures for prognosis prediction in glioblastoma multiforme (GBM). The expres-
sion and microarray data of GBM were downloaded from The Cancer Genome Atlas (TCGA) and the Gene Expression 
Omnibus (GEO). Differentially expressed mRNAs, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) between 
GBM and normal samples were identified by differential expression analysis using Bayesian T-test. Functional enrichment 
analysis was performed to identify GBM associated functions and pathways. A subset of signature mRNAs was selected 
from differentially expressed mRNAs and used to build a risk model for GBM using random survival forest (RSF) method. 
The performance of the model in prognosis prediction was validated using an independent validation dataset. A competing 
endogenous RNA (ceRNA) network was then constructed and key prognostic markers were identified from the network by 
survival analysis. In total, 905 mRNAs, 24 miRNAs and 403 lncRNAs were identified to be differentially expressed between 
GBM and normal samples. Functional and pathway items such as p53 signaling and PI3K/Akt signaling were significantly 
enriched by differentially expressed mRNAs. The RSF risk model showed a high performance in prognosis prediction for 
both training and validation dataset. The ceRNA network provided a comprehensive view of the interplays between differ-
entially expressed mRNAs, miRNAs and lncRNAs. Among the ceRNA network, p21 (RAC1) activated kinase 1 (PAK1) and 
synaptic vesicle glycoprotein 2B (SV2B) were identified as key prognosis associated markers. The RSF risk model and key 
prognostic markers may contribute to GBM diagnosis in future clinical practice. 
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Glioblastoma multiforme (GBM) is the most frequent 
and aggressive primary brain tumors in adults [1, 2]. GBM is 
characterized by increased proliferation, aggressive invasion, 
vigorous angiogenesis and remarkable heterogeneity [2]. 
Despite tremendous progress in medical care, the prognosis 
of GBM patients remains gloomy, with a median survival of 
only 14.6 months [1]. Currently, the management of GBM 
is limited by the insufficient accuracy of histopathologic 
diagnosis in clinical outcome prediction [3]. Molecular 
prediction tools with high accuracy are in urgent need in 
future clinical practice of GBM.

Expression alterations of genes involved in tumor 
suppressive and oncogenic pathways are common features of 
GBM [4]. For example, inhibitor of growth family member 
4 (ING4), a tumor suppressor functioning by suppressing 
hypoxia inducible factor 1 (HIF) activation [5] and nuclear 
factor kappa B (NF-κB) pathway [6], is significantly downreg-

ulated in GBM [7]. Recently, a bioinformatic analysis of 123 
GBM patients has established a 14-mRNA prognostic signa-
ture, which could be used to classify GBM patients into low 
and high risk groups [8]. Among these signature mRNAs, the 
tumor suppressor Insulin like growth factor binding protein 
like 1 (IGFBPL1) is downregulated whereas the oncogenic 
genes epidermal growth factor receptor (EGFR) and C-C 
motif chemokine ligand 2 (CCL2) are upregulated in high 
risk group [8].

Long non-coding RNAs (lncRNAs) and microRNAs 
(miRNAs) are non-coding RNAs playing essential roles in 
various biological processes, including cell division, prolif-
eration, differentiation and apoptosis [9, 10]. They regulate 
gene expression at post-transcriptional level by targeting 
protein-coding RNAs [10]. Besides, miRNAs may also 
function via interacting with lncRNAs [10]. The coexpressed 
mRNAs and lncRNAs targeted by the same miRNAs are 
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considered as competing endogenous RNAs (ceRNAs) [10]. 
Recently, dysregulation of lncRNAs and miRNAs in various 
cancers has attracted increasing attention, as they appear 
to be key players in tumor development and progression 
[9, 11]. Expression alterations of miRNAs and lncRNAs in 
GBM are frequently observed and the feasibility to develop 
miRNA and lncRNA biomarkers has also been demonstrated 
[12–14]. For example, miR-128 and miR-342-3p are signifi-
cantly downregulated in GBM and may serve as prognostic 
markers [12]. Expression alterations of AC005013.5, 
UBE2R2-AS1, ENTPD1-AS1, RP11-89C21.2, AC073115.6 
and XLOC_004803 have also been observed in GBM and 
these lncRNAs have been used to develop a 6-lncRNA signa-
ture of GBM [13].

In order to develop novel molecular tools to predict the 
prognosis of GBM patients, we analyzed the expression and 
microarray data of GBM downloaded from The Cancer 
Genome Atlas (TCGA) and the Gene Expression Omnibus 
(GEO). Differentially expressed mRNAs, miRNAs and 
lncRNAs were screened by differential expression analysis. 
A subset of differentially expressed mRNAs was selected to 
construct a random survival forest (RSF) model, which was 
efficient in evaluating the risks of GBM patients. Moreover, 
a GBM associated ceRNA network were constructed to 
illuminate the interactions between differentially expressed 
miRNAs, mRNAs and lncRNAs. Among the network, p21 
(RAC1) activated kinase 1 (PAK1) and synaptic vesicle 
glycoprotein 2B (SV2B) were identified to be key prognostic 
markers. 

Materials and methods

Data source. RNAseqV2 exon data (level 3, Illumina 
HiSeq 2000 RNA Sequencing platform), mRNA microarray 
data (Affymetrix Human Exon 1.0 ST Array) and clinical 
data of GBM were downloaded from TCGA (https://tcga-
data.nci.nih.gov/) in March 2018. A total of 158 samples (153 
GBM and 5 normal samples) were included in the TCGA-seq 
dataset and 441 samples (431 GBM and 10 normal samples) 
were included in the TCGA-array dataset. miRNA micro-
array data (Illumina Human v2 MicroRNA expression 
beadchip) under the accession code of GSE25631 [14, 15] 
was downloaded from GEO (https://www.ncbi.nlm.nih.gov/
geo/). A total of 87 samples (82 GBM and 5 normal samples) 
were included in the GSE25631 dataset.

Data preprocessing. RNAseqV2 exons in the TCGA-seq 
dataset were annotated by mapping their starting points and 
sequences to Genecode database [16] (https://www.genco-
degenes.org/) and the exons were defined as lncRNAs or 
mRNAs according to the mapping results.

Genes with low expression level were then removed from 
the TCGA-seq dataset. The preprocessing of lncRNA and 
mRNA sequencing data were preformed using the R package 
edgeR [17, 18] (Version 3.4, http://www.bioconductor.org/
packages/release/bioc/html/edgeR.html). Specifically, the 

raw counts were normalized to logCPM (count per million) 
values for linear modeling and the mean-variance relation-
ship was adjusted by the precision weights (voom algorithm). 
The preprocessing of miRNA microarray data included 
background correction by robust multi-array average (RMA) 
method [19, 20], quantile normalization and log transforma-
tion [21].

Screening of differentially expressed genes. Differen-
tial expression analysis for mRNA, lncRNA and miRNA 
data was performed using Bayesian T-test method of limma 
package [22] (version  3.10.3, http://www.bioconductor.org/
packages/2.9/bioc/html/limma.html). A p-value was adjusted 
by applying multiple testing corrections of Benjamini-
Hochberg [23]. The selection thresholds for differentially 
expressed mRNAs and lncRNAs in the TCGA-seq dataset 
were set as adj. p-value <0.05 and |log2FC(fold change)| >2. 
The selection thresholds for differentially expressed mRNAs 
and lncRNAs in the TCGA-array dataset were set as adj. 
p-value <0.05 and |log2FC| >1.5. The selection thresholds for 
differentially expressed miRNAs in the TCGA-array dataset 
were set as adj. p-value <0.05 and |log2FC| >1. Bidirectional 
hierarchical clustering was performed based on differentially 
expressed mRNAs (TCGA-seq), lncRNAs and miRNAs using 
hclust algorithm of R.

Functional and pathway enrichment analysis. Gene 
Ontology (GO) [24] and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) [25] enrichment analysis were performed 
for differentially expressed mRNAs using The Database 
for Annotation, Visualization and Integrated Discovery 
(DAVID) [26] (version 6.8, https://david.ncifcrf.gov/). 
A p-value was adjusted by Benjamini-Hochberg method and 
the selection criterion for significant functional and pathway 
items was set as adj. p-value <0.05.

Protein-protein interaction (PPI) network analysis. 
Mentha  [27]  (http://mentha.uniroma2.it/about.php), 
BioGRID [28] (version 3.4, https://wiki.thebiogrid.org/) and 
HPRD [29] (release 9, http://www.hprd.org/) are databases 
containing PPI data of Homo sapiens. PPIs appeared in all 
the three databased were combined and used as background 
PPIs. The differentially expressed mRNAs were then mapped 
to the background PPIs. A PPI network was constructed 
based on the resulting PPIs using Cytoscape [30] (http://
www.cytoscape.org/). Topology analysis of the PPI network 
was performed using the plug-in CytoNCA [31] (version 
2.1.6, http://apps.cytoscape.org/apps/cytonca) (parameter 
= ‘without weight’) and the degree of each node was thus 
acquired. Nodes with the highest degrees were considered 
to be central nodes or hub nodes [32]. Afterwards, function 
modules with biological significance were identified from the 
PPI network by the plug-in MCODE [33] of Cytoscape.

Construction of prognostic mRNA model. RSF is a 
survival analysis method based on random forest [34]. A 
prognostic mRNA model for GBM was constructed by 
applying RSF using the R package randomForestSRC (version 
2.4.0, https://cran.r-project.org/web/packages/randomFor-
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estSRC/index.html). Specifically, the TCGA-seq dataset was 
used as training dataset and N bootstrap samples were drawn 
from the dataset. A survival tree was built in each sample 
and the variable importance (VIMP) score [35] was acquired 
for each mRNA. The VIMP score of a mRNA was positively 
correlated with the prediction capacity of the variable. A 
VIMP score close or less than 0 indicated little predictive 
value. The top 20 ranked mRNAs were used to constructed 
a new prognostic RSF model. Risk scores of samples in the 
training dataset were calculated based on the cumulative 
hazard function (CHF) of the prognostic model [36]. A 
certain risk score was chosen as the cutoff to divide samples 
in the training dataset into high and low risk groups. The 
prognostic differences between the two groups were analyzed 
by log-rank test and Kaplan-Meier survival analysis.

A total of 70 samples were randomly extracted from the 
TCGA-array dataset and were used as validation dataset. The 
risk scores of samples in the validation dataset were calcu-
lated using the same method as the training dataset. Samples 
in the validation dataset were then divided into high and low 
risk groups, using the same cutoff as the training dataset. The 
prognostic differences between the two groups were further 
analyzed by log-rank test and Kaplan-Meier survival analysis.

Construction of ceRNA network. For TCGA-seq dataset, 
pearson correlation coefficient between each differentially 
expressed lncRNA and mRNA was calculated. The selection 
criteria for lncRNA-mRNA co-expression pairs were set as 
|r| >0.95 and p<0.05.The targets of differentially expressed 
miRNAs were predicted using miRWalk2.0 [37] (http://zmf.
umm.uni-heidelberg.de/apps/zmf/mirwalk2/), which could 
employ information from databases miRWalk, miRanda, 
miRMap, miRNAMap, RNA22 and Targetscan. A gene 
was considered to be a target of a miRNA when the gene 
was predicted by at least 4 of the 6 databases. The resulting 
miRNA-mRNA pairs were used as background. Differentially 
expressed miRNA-mRNA regulation pairs were acquired by 
mapping differentially expressed mRNAs to the background.

miRNA-lncRNA regulation pairs from starBase [38] 
(http://starbase.sysu.edu.cn/) and InCeDB [39] (http://
gyanxet-beta.com/lncedb/) were integrated and the resulting 
miRNA-lncRNA pairs were used as background to identify 
differentially expressed miRNA-lncRNA pairs.

Based on the differentially expressed miRNA-mRNA 
pairs, miRNA-lncRNA pairs and mRNA-lncRNA pairs, 
lncRNA-mRNA pairs regulated by at least two common 
miRNAs were identified. These mRNA-lncRNA pairs and 
their common regulating miRNAs were used to construct 
a miRNA-lncRNA-mRNA network, which is also called 
ceRNA network. Hub nodes of the network were identified 
by topology analysis using CytoNCA. mRNAs in the network 
were subjected to pathway enrichment analysis using the R 
package clusterProfiler [40] (version 3.2.11, http://www.
bioconductor.org/packages/release/bioc/html/clusterPro-
filer.html). The selection criterion was set as Benjamini-
Hochberg adj. p-value <0.05.

Identification of prognostic mRNAs and lncRNAs from 
ceRNA network. Clinical characteristics, including overall 
survival (OS), OS status, disease-free survival (DFS) and DFS 
status, were used for the identification of prognostic mRNAs 
and lncRNAs from ceRNA network. Based on the mean 
expression value of each differentially expressed lncRNA 
or mRNA, tumor samples were divided into high and low 
expression group. The correlation between each lncRNA or 
mRNA and prognosis was evaluated by log-rank test and 
Kaplan-Meier survival analysis. The threshold of statistical 
significance was set as p<0.05.

Results

Differentially expressed mRNAs, lncRNAs and 
miRNAs. A total of 2631 lncRNAs and 18201 mRNAs were 
obtained from the TCGA-seq dataset after reannotation and 
data filtering. Among them, 403 lncRNAs and 2954 mRNAs 
showed significant expression differences between tumor 
and normal samples (Table 1). Further differential expression 
analysis also identified 1016 differentially expressed mRNAs 
from the TCGA-array dataset and 24 differentially expressed 
miRNAs from the GSE25631 dataset (Table 1). The intersec-
tion of differentially expressed mRNAs from TCGA-seq and 
TCGA-array dataset consisted of 905 (267 upregulated and 
638 downregulated) mRNAs (Figure 1A). Further bidirec-
tional hierarchical clustering analysis based on differen-
tially expressed mRNAs, miRNAs and lncRNAs showed that 
tumor samples could be clearly distinguished from normal 
samples (Figure 1B).

Functional annotation of differentially expressed 
mRNAs. In order to reveal biological functions and 
pathways deregulated in GBM, functional annotation 
was performed to acquire GO and KEGG terms enriched 
by differentially expressed mRNAs (Table 2). The terms 
enriched by upregulated mRNAs included GO:0051301~cell 
division, GO:0007067~mitotic nuclear division, hsa04151: 
PI3K-Akt signaling pathway and hsa04115:p53 signaling 
pathway. The terms enriched by downregulated mRNAs 
included GO:0007268~chemical synaptic transmis-
sion, GO:0007269~neurotransmitter secretion and 
GO:0017157~regulation of exocytosis.

PPI network. In order to identify functionally impor-
tant genes in GBM, a PPI network was built for differen-
tially expressed mRNAs. In total, 1216 PPIs were acquired 

Table 1. Statistics of differentially expressed miRNAs, mRNAs and ln-
cRNAs.

miRNA mRNA-Seq mRNA-array lncRNA
Up-DEGs a 10 1033 322 125
Down-DEGs 14 1921 694 278
Total 24 2954 1016 403

a upregulated differentially expressed gene; b downregulated differentially 
expressed gene.
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Figure 1. Differentially expressed mRNAs and bidirectional hierarchical clustering. A) Venn diagram of differentially expressed mRNAs in TCGA-seq 
dataset and TCGA-array dataset. B) Bidirectional hierarchical clustering of samples based on differentially expressed mRNAs (left), miRNAs (middle) 
and lncRNAs (right). Tumor and normal samples were represented as light grey and dark grey, respectively.

Table 2. Functional and pathway items enriched by differentially expressed mRNAs.

Term Count Adjusted p-value
UP regulated mRNAs
GO-BP a GO:0051301~cell division 36 4.73E-16
GO-BP GO:0007067~mitotic nuclear division 29 9.08E-14
GO-BP GO:0030198~extracellular matrix organization 25 1.03E-12
GO-BP GO:0007062~sister chromatid cohesion 15 1.59E-07
GO-BP GO:0050900~leukocyte migration 14 1.10E-05
KEGG b pathway hsa04512:ECM-receptor interaction 14 2.06E-07
KEGG pathway hsa04110:Cell cycle 16 1.07E-07
KEGG pathway hsa04151:PI3K-Akt signaling pathway 21 3.85E-05
KEGG pathway hsa04510:Focal adhesion 16 5.04E-05
KEGG pathway hsa04115:p53 signaling pathway 10 4.23E-05
DOWN regulated mRNAs
GO-BP GO:0007268~chemical synaptic transmission 76 2.92E-47
GO-BP GO:0007269~neurotransmitter secretion 21 1.15E-13
GO-BP GO:0007399~nervous system development 43 2.45E-12
GO-BP GO:0017157~regulation of exocytosis 15 1.30E-11
GO-BP GO:0034220~ion transmembrane transport 34 1.90E-10
KEGG pathway hsa04727:GABAergic synapse 31 3.34E-19
KEGG pathway hsa04723:Retrograde endocannabinoid signaling 32 3.95E-18
KEGG pathway hsa05033:Nicotine addiction 22 6.33E-18
KEGG pathway hsa04724:Glutamatergic synapse 33 9.65E-18
KEGG pathway hsa05032:Morphine addiction 28 1.23E-15

a Gene Ontology biological process; b Kyoto Encyclopedia of Genes and Genomes.
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for 557 (191 upregulated and 366 downregulated) mRNAs. 
Topological analysis of the PPI network showed that tumor 
protein p53 (TP53), cyclin-dependent kinase 2 (CDK2) and 
Fibronectin 1 (FN1) were nodes with the highest connec-
tivity degree and were considered to be the hub nodes 
(Table  3). In addition, 9 modules could be identified from 
the PPI network. According to their scores, the top 4 ranked 
modules were considered to be functionally important for 
GBM (Figure 2).

Prognostic RSF model of GBM. In order to discriminate 
low from high risk GBM samples, a prognostic RSF model 
was further constructed using the training dataset (n=151). 
According to the VIMP scores of differentially expressed 
mRNAs, the top 20 mRNAs were used as signature mRNAs 
to construct the prognostic RSF model. Based on the CHF 

Table 3. The top 12 nodes in the protein-protein interaction (PPI) net-
work.
Rank Gene Degree
1 TP53 52
2 CDK2 45
3 FN1 36
4 CALM3 35
5 FLNA 29
6 PLK1 28
7 DLG4 26
8 YWHAH 24
9 GABARAPL1 23
10 VIM 23
11 AURKA 23
12 STX1A 23

Figure 2. The top 4 modules identified from the protein-protein interaction (PPI) network of differentially expressed mRNAs. Upregulated and down-
regulated mRNAs were shown as dark grey and light grey nodes, respectively. Interactions between nodes were shown as gray lines.
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of the RSF model, the risk scores of samples in the training 
dataset were calculated. The risk score 51 was set as the cutoff 
to divide samples into high risk (risk score ≥51, n=89) and 
low risk (risk score <51, n=62) groups, as the mortality ratio 
was high and reached a platform at where risk score = 51 
(Figure 3A). The expression levels of the 20 mRNAs were 
displayed as heatmap in Figure 3B. Survival analysis showed 
that the prognosis of low risk group was significantly better 
than that of high risk group (log rank p<0.0001) (Figure 3C).

The performance of the prognostic RSF model was 
validated using validation dataset (n=70). The validation 

samples were divided into high (n=21) and low (n=49) risk 
groups using the same cutoff (risk score=51) as the training 
dataset (Figure 3A). The expression levels of the 20 mRNAs 
were displayed as heatmap in Figure 3E. Consistent with the 
training dataset, the prognosis of low risk group was also 
significantly higher than that of high risk group (log rank 
p<0.0001) in the validation dataset (Figure 3C).

GBM associated ceRNA network. A total of 1987 lncRNA-
mRNA co-expression pairs (|r|>0.95 and p<0.05) were 
identified between 56 lncRNAs and 235 mRNAs, according 
to the Pearson correlation coefficients between differentially 

Figure 3. Survival analysis based on the random survival forest (RSF) risk model. A) The distribution of mortality ratios and risk scores of training 
samples (left) and validation samples (right). The red lines indicated where risk scores equaled 51. B) The heatmap showing the expression levels of the 
signature mRNAs in the training (left) and validation (right) dataset. Low and high-risk samples were indicated as orange and violet bars, respectively. 
The expression levels were indicated as colors from blue (low expression) to red (high expression). C) Kaplan-Meier curves of low-risk and high-risk 
groups in the training (left) and validation (right) dataset. The survival curves for low and high-risk groups were showed as grey and red lines, respec-
tively.
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expressed lncRNAs and mRNAs. The regulation relationships 
between differentially expressed miRNAs and lncRNAs were 
predicted on the basis of 6 databases, including miRWalk, 
miRanda, miRMap, miRNAMap, RNA22 and Targetscan. 
A total of 541 miRNA-lncRNA regulation pairs were identi-
fied between 32 miRNAs and 203 lncRNAs. Additionally, 
the regulation relationships between differentially expressed 
miRNAs and mRNAs were predicted based on the databases 
starBase and InCeDB. As a result, 5740 potential miRNA-
mRNA regulation pairs were identified between 33 miRNAs 
and 851 mRNAs.

The miRNA-lncRNA regulation pairs, miRNA-mRNA 
regulation pairs and mRNA-lncRNA coexpression pairs 
identified above were further integrated. In total, 115 mRNA-
lncRNA coexpression pairs were identified to be targeted 
by at least two common miRNAs. These mRNA-lncRNA 
pairs and the common miRNAs were used to construct a 
ceRNA network (Figure 4A), which consisted of 88 nodes 
(14 miRNAs, 65 mRNAs and 8 lncRNAs) and 241 edges. In 
the network, lncRNAs and mRNAs regulated by common 
miRNAs were considered as ceRNAs to each other.

According to topological analysis, ST8 alpha-N-acetyl-
neuraminide alpha-2,8-sialyltransferase 3 (ST8SIA3)-RFPL1 
Antisense RNA 1 (RFPL1S) was the mRNA-lncRNA pair with 
the most common regulating miRNAs (n=4). RP11-863P13.4 
(n=9) was the lncRNA with most regulating miRNAs. DLG 
associated protein 2 (DLGAP2) (n=7) and SV2B (n=7) were 
the mRNAs with most regulating miRNAs. hsa-miR-485-5p 
(n=47), hsa-miR-339-5p (n=45) and hsa-miR-770-5p (n=38) 
were the miRNAs with most target mRNAs. According to 
pathway enrichment analysis, mRNAs in the ceRNA network 
mainly enriched in KEGG pathways such as nicotine addic-

tion, morphine addiction, neuroactive ligand-receptor inter-
action (Figure 4B).

Prognosis related mRNAs and lncRNAs. In order to 
identify prognosis related mRNAs and lncRNAs from the 
ceRNA network, log rank test and Kaplan-Meier survival 
analysis were performed. As a result, 10 OS related mRNAs, 
1 DFS related mRNA and 1 DFS related lncRNA were 
identified (Table 4). The OS related mRNAs were cyclin 
and CBS domain divalent metal cation transport mediator 
1 (CNNM1), cellular repressor of E1A stimulated genes 2 

Figure 4. The GBM associated competing endogenous RNA (ceRNA) network. A) The ceRNA network. miRNAs, lncRNAs and mRNAs were shown as 
triangles, squares and circles, respectively. Regulation and coexpression relationships were shown as gray lines. B) Pathway items enriched by mRNAs 
in the ceRNA network. The vertical axis indicated the items and the horizontal axis indicated the number of mRNAs enriched.

Table 4. Prognostic markers identified from the competing endogenous 
RNA (ceRNA) network.

Names
Log-rank 
p-value

High.50% 
(Months) a

Low.50% 
(Months) b

OS c

mRNA

CNNM1 0.016263 12.55 15.93
CREG2 0.033294 12.48 14.91
PAK1 0.022436 12.55 15.77
PSD 0.021277 12.48 15.93
RXFP1 0.025564 11.83 14.91
SLC12A5 0.040895 11.83 14.91
SLC4A10 0.029783 11.83 14.91
SV2B 0.00808 10.94 15.93
SYT1 0.015276 11.83 15.77
SYT13 0.034539 12.48 15.77

DFS d

mRNA PAK1 0.031982 6.41 7.62
lncRNA TRHDE-AS1 0.014188 10.22 5.98

a Median survival time of high risk group; b Median survival time of low 
risk group; c Overall survival; d Disease-free survival. 
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(CREG2), PAK1) pleckstrin and Sec7 domain containing 
(PSD), relaxin family peptide receptor 1 (RXFP1),  solute 
carrier family 12 member 5 (SLC12A5), solute carrier family 
4 member 10 (SLC4A10), SV2B, synaptotagmin 1 (SYT1) 
and synaptotagmin 13 (SYT13). The DFS related mRNA and 
lncRNA were PAK1 and TRHDE antisense RNA 1 (TRHDE-
AS1), respectively.

Discussion

In the present study, we comprehensively analyzed the 
expression profiles of GBM and identified differentially 
expressed mRNAs, miRNAs and lncRNAs between tumor 
and normal samples. A subset of differentially expressed 
mRNAs was identified and used to build a GBM risk model, 
which was efficient and reliable in discriminating high risk 
from low risk GBM samples. In addition, a GBM associated 
ceRNA network was also constructed to delineate the inter-
plays between differentially expressed mRNAs, miRNAs and 
lncRNAs.

RSF has been shown as a promising approach to identify 
disease associated molecular markers [41, 42]. In our study, 
20 mRNAs were identified and used to build an RSF model, 
which showed a high performance in risk evaluation. When 
evaluated using the risk model, GBM samples could be 
classified to be either low or high-risk samples. According 
to survival analysis, high risk samples showed a signifi-
cantly worse prognosis than low risk samples (p<0.0001) in 
both training and validation dataset. Therefore, our GBM 
risk model may serve as a novel diagnostic tool for GBM 
patients and may provide useful information for further 
treatment.

Deregulation of signaling pathways related to cancer 
progression is a common feature of cancers [43]. In accor-
dance with this, our functional annotation analysis showed 
that p53 signaling pathway and PI3K-Akt signaling pathway 
were significantly enriched by differentially expressed 
mRNAs, indicating that these two pathways were dysregu-
lated in GBM. P53 is a well characterized tumor suppressor, 
the function of which is essential for cell cycle arrest and 
apoptosis [44]. Impaired function of p53 is a frequent event 
that has been confirmed to significantly correlate with 
cancer cell invasion and metastasis in GBM [44]. Recently, 
restoring the function of p53 has been proposed as a reason-
able approach for GBM treatment [45, 46]. Similar to attenu-
ated p53 function in GBM, activation of PI3K/Akt signaling 
pathway is also frequently involved in GBM development 
and progression [47]. Inhibitors of PI3K and Akt have been 
considered as promising therapeutics of GBM [47–49]. 
Taken together, dysregulation of p53 signaling pathway and 
PI3K/Akt signaling pathway are major contributors to GBM 
progression.

According to survival analysis of the ceRNA network, 
CNNM1, CREG2, PAK1, PSD, RXFP1, SLC12A5, SLC4A10, 
SV2B, SYT1, SYT13 were identified to be OS related 

mRNAs. Among these mRNAs, PAK1 was noticeable and 
may be a key prognostic marker of GBM, as it was also a 
DFS related mRNA. According to our survival analysis, 
overexpression of PAK1 correlated with better prognosis, 
suggesting that PAK1 may serve as an oncogene in GBM. 
Consistent with this, PAK1 is a serine/threonine kinase 
downstream of PI3K/Akt signaling [50], further supporting 
a link between PAK1 and GBM. Though the specific roles 
of PAK1 in GBM remain elusive, PAK1 plays important 
role in cell motility, invasion and metastasis in many other 
cancers [51–56]. For example, PAK1 is strongly amplified in 
breast cancer and induces breast cancer cell transformation 
by activating MAPK and MET signaling [51, 52, 57]. PAK1 
also shows significant expression elevation in malignant 
colon carcinoma and promotes colon cancer progression by 
phosphorylating and activating β-catenin [53, 54]. Besides, 
upregulation of PAK1 is also associated with non-small cell 
lung cancer cell invasiveness, whereas downregulation of 
PAK1 inhibits non-small cell lung cancer progression [55, 
56]. Therefore, we speculated that PAK1 also plays essential 
role in GBM progression.

In addition to PAK1, SV2B may also serve as a key 
prognostic mRNA of GBM. SV2B was an OS related mRNA, 
as well as a hub node of the ceRNA network. SV2B is a 
membrane glycoprotein and is functionally important for 
neurotransmission processes [58, 59]. A recent bioinformatic 
analysis has shown that SV2B is associated with GBM [60]. 
Moreover, SV2A, a homologous gene of SV2B, is correlated 
with clinical response to levetiracetam treatment in glioma 
[61], further supporting a role of SV2B in GBM progression.

One of the main advantages of our study was the construc-
tion of a GBM risk model using RSF. The risk model was 
efficient and reliable for risk evaluation of GBM patients. 
In addition, a GBM associated ceRNA network was also 
constructed and provided a comprehensive view of the inter-
plays between differentially expressed miRNAs, mRNAs 
and lncRNAs and may contribute to our understanding of 
the molecular mechanisms underlying GBM. Based on the 
ceRNA network, GBM associated prognostic markers such 
as PAK1 and SV2B were further identified. However, there 
were also limitations in our study. Insufficient samples were 
included in our study and more samples should be included 
in future studies. Experimental studies are also needed to 
validate the involvement of prognostic markers in GBM and 
to provide a detailed understanding of the molecular mecha-
nisms related to these markers.

In summary, we constructed a GBM risk model through 
RSF analysis. The risk model showed a high performance in 
discriminating GBM patients with different risk levels. In 
addition, we also identified PAK1 and SV2B as key prognostic 
markers of GBM through ceRNA network analysis. Higher 
expression of PAK1 and SV2B correlated with worse 
prognosis. Both the risk model and the prognostic markers 
may provide valuable information and contribute to outcome 
prediction of GBM in future clinical practice.
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