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Mice immunogenicity after vaccination by DNA vaccines containing individual 
genes of a  new type of reovirus
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Summary. – In this study, we investigated humoral and cellular immune responses in mice to DNA vac-
cines containing individual S or M genes of a new type of reovirus (nRV) isolate from a severe acute respira-
tory syndrome (SARS) patient in Beijing, China. Mice were immunized intramuscularly (i.m.) with 100 μg of 
S1, S2, S3, S4, M1, M2, and M3 DNA vaccine each 4 times in 2-week intervals and assayed for humoral IgG, 
IgG1, IgG2, and IgG2b antibodies by ELISA and for cellular immune response, particularly IFN-γ induction 
by ELISpot assay. Moreover, CD4+ and CD8+ T cell levels in peripheral blood mononuclear cells were assayed 
by flow cytometry. We found that all DNA vaccines induced IgG antibodies, predominantly of the IgG2a class 
and S3 DNA vaccine was the strongest inducer. M2 and S3 DNA vaccines elicited Th1- and Th2-based immune 
responses, respectively, while S1 and M3 DNA vaccines induced a mixed Th1/Th2 response. M1, S2, and S4 
DNA vaccines were poorly immunogenic. To our knowledge, this is the first report characterizing mammalian 
reovirus DNA vaccines applied to a mouse model. 

Keywords: reovirus; DNA vaccine; SARS; mouse; immunogenicity

*Corresponding author. E-mail: maopy302@hotmail.com; phone: 
+86-10-66933316. #Bingke Bai and Honghui Shen contributed 
equally to this paper.
Abbreviations: ELISpot  =  enzyme-linked immunosorbent spot 
assay; IFN-γ = interferon gamma; i.m. = intramuscularly; R4 = new 
type of reovirus; SARS  =  severe acute respiratory syndrome; 
SFC = spot-forming cells 

Introduction

Mammalian reoviruses (respiratory enteric orphan vi-
ruses), members of the family Reoviridae, are non-enveloped, 
double-stranded (ds) RNA viruses with a genome composed of 
10 genes. Although orthoreoviruses have been identified as the 
causative agents of diseases in animals, infections in humans 
are generally benign, resulting in rare cases of mild upper 
respiratory tract illness or enteritis in infants or children.

In reovirions, the dsRNA is surrounded by a  double 
capsid comprised of an internal core that contains the viral 
transcriptase and an outer capsid. The outer capsid contains 
3 polypeptides, μ1, σl, and σ3, which are encoded by genes 

of M2, S1, and S4, respectively (Weiner et al., 1978). The σl 
polypeptide is the viral hemagglutinin and has been linked 
to host cell attachment, type-specific neutralization, cyto-
toxic T cell recognition, tissue tropism, and pathogenesis 
of reovirus-mediated diseases (Finberg et al., 1979, 1982; 
Lee et al., 1981; Weiner et al., 1977). Viral nonstructural 
proteins μNS (encoded by M3) and σNS (encoded by S3), 
as well as core protein μ2 (encoded by M1) play key roles in 
forming viral inclusions and recruiting other viral proteins 
and RNA to these structures for replication and assembly 
(Becker et al., 2001, 2003; Broering et al., 2004; Mbisa et 
al., 2000; Parker et al., 2002). Tyler et al. identified the viral 
S1 and M2 genes as the major determinants of differences 
in the capacities of reovirus type 1 Lang (T1L) and type 
3 Dearing (T3D) to induce apoptosis of L cells (Tyler et 
al., 1996). The segmented genome of the virus allows for 
the generation of intertypic reassortants, which have been 
exploited to assign biological functions to individual genes 
and their protein products.

A new type of reovirus was isolated from the first case 
of severe acute respiratory syndrome (SARS) in Beijing, 
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China (He et al., 2005, 2006; Song et al., 2008). Based on 
electron microscopy and DNA sequence analysis, this vi-
rus, designated R4, represents a new type of reovirus that 
is most closely related to the mammalian orthoreovirus 2 
isolate. Owing to the potential advantages of DNA vaccines 
(Chen et al., 2003; Gurunathan et al., 2000; Hung et al., 2007; 
Osorio et al., 1999; Rogers et al., 1999; Saldarriaga et al., 
2006), in this study, we constructed DNA vaccines contain-
ing individual S or M genes of nRV and investigated their 
immunogenicity for mice. The results showed that (i) all of 
them induced specific humoral antibodies predominatly of 
IgG2a class, (ii) S3 DNA vaccine was the strongest inducer, 
(iii) M2 and S3 DNA vaccines elicited Th1- and Th2-based 
immune responses, respectively, while S1 and M3 DNA vac-

cines induced a mixed Th1/Th2 response, and (iv) M1, S2, 
and S4 DNA vaccines were poorly immunogenic. We hope 
that these results will be helpful in efforts to control possible 
reovirus-associated epidemics. 

Materials and Methods

Construction of DNA vaccines. The reovirus, R4, was isolated 
from cells cultured from throat swabs of the first SARS patient 
identified in Beijing, China (He et al., 2005, 2006; Song et al., 
2008). Viral RNA was extracted from 140 μl of cell culture lysate 
with a QIAamp Viral RNA Mini Kit (Qiagen, Germany) following 
the manufacturer΄s  instructions. The S1-S4 and M1-M3 genes 
were respectively amplified using RT-PCR. The identities of the 
genes were confirmed by sequence analysis (Table 1), and then 
the genes were inserted into pcDNA3.1+ (Invitrogen, USA). In 
the subsequent text, plasmids are designed according to their en-
coded genes. Restriction enzyme and sequence analysis indicated 
that all seven plasmids were correctly constructed. The plasmids 
were purified using the Qiagen Plasmid Mega Kit (Qiagen) ac-
cording to the manufacturer΄s  protocol. DNA concentrations 
were determined using a SmartSpecTM Plus Spectrophotometer 
(Bio-Rad, USA).

Immunization of mice. Female BALB/c mice (6–8-week-old) 
were purchased from the Academy of Military Medical Sciences, 
China, and divided randomly into 9 groups. Mice in each group 
(n = 6) were immunized i.m with 100 µl (1 µg/µl) of one of the 7 
DNA vaccines or controls. Mice were immunized 4 times at 2-week 
intervals. Control vector pcDNA3.1+ and PBS (Sigma) were used 
as negative controls.

ELISA of IgG antibodies. Sera were collected prior to each im-
munization. Anti-R4 antibody levels were measured by ELISA. 
Briefly, 96-well microtiter plates (Costar, USA) were coated with 
100 TCID50 R4 (cultured from L929 cell lines and centrifuged after 
freeze-thawing) and incubated at 4°C overnight. Plates were then 
blocked and incubated with diluted sera (1:10) for 2 hrs, followed 
by a 1 hr incubation with alkaline phosphatase-conjugated goat 
anti-mouse IgG (1:5,000; Sigma) at 37°C. Color reaction was de-
termined at A450. Results from 3 independent experiments were 
expressed as means ± SD.

ELISA of IgG subclass antibodies. A similar ELISA protocol was 
followed to quantify the IgG subclasses (IgG1, IgG2a, and IgG2b) 
using ADI ELISA kits (Alpha Diagnostic International Inc., USA). 
One hundred μl of the samples, standards, and controls, were added 
to the wells and incubated for 1 hr. HRP-conjugated antibodies were 
then added to each well followed by washing and pat drying. After 
incubation with substrate, A450 was determined. Results from 3 
independent experiments were expressed as means ± SD. 

ELISpot assay of IFN-γ induction. Cellular immune responses 
to R4 were assessed using an IFN-γ ELISpot assay (Dakewe Bio-
tech, China) according to the manufacturer΄s instructions. Mouse 
splenocytes were harvested 10 days after the final immunization 

Table 1. Primers used to amplify individual reovirus genes by PCR 

Gene
Primer
S1
Forward
5΄-AAGAATTCATGTCTGAGCTGATTCAGCTTA-3΄
Reverse
5΄-AAGAGCTCTCAGCCTAAGCATGGATACA-3΄
S2
Forward
5΄-AACTCGAGTCGCTGGTCAGTTATGGCTC-3΄ 
Reverse
5΄-GGTCTAGAGGATCCCCTCACTCCAAGACG-3΄
S3
Forward 
5΄-AAAAGCTTCCTGTTGTCGTCACTATGGCTT-3΄
Reverse
5΄-GGTCTAGAAGCTCACTCACCCATTACACG-3΄
S4
Forward 
5΄-AACTCGAGATGGAGGTGTGCTTACCCAATGG-3΄
Reverse
5΄-GGGATATCTTAGCCAAGAATCATCGGATCGC-3΄
M1
Forward 
5΄-AAGGTACCTCATGGCTTACATCGCAGTTCC-3΄
Reverse
5΄-GGCTCGAGGTCACGGATCACGCCAAGTCAGA-3΄
M2
Forward
5΄-AACTCGAGATGGGGAACGCTTCCTCTATCG-3΄
Reverse
5΄-GGGATATCTTAACGTGTGTACCCACGTTTG-3΄
M3
Forward 
5΄-AAGGTACCATGGCTTCATTCAAGGGATTCT-3΄
Reverse
5΄-GGCTCGAGCTATCACCTACAATTCATCAGT-3΄
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and incubated in RPMI 1640 medium with 1×105 cells/well in 
triplicates. Specific peptides targeting seven different genes were 
designed (Table 2) and synthesized by Life Technologies Corpora-
tion (USA). These peptides (2 μg/ml) were used as the stimulating 
antigens. The plates were read with an ELISpot reader (Bioreader 
4,000, Bio-sys, Germany). The number of spot-forming cells (SFC) 
per 105 splenocytes was calculated. Medium backgrounds were 
consistently lower than 10 SFC/105 splenocytes. Results from 3 
independent experiments were expressed as means ± SD.

Flow cytometry of CD4+ and CD8+ T-cells. T cell surface mark-
ers were analyzed by flow cytometry. Briefly, 10 days following the 
final immunization, splenocytes were isolated and stained using 
the following monoclonal antibodies: allophycocyanin-labeled 
anti-mouse CD3, FITC-labeled anti-mouse CD4, peridinin 
chlorophyll protein-labeled anti-mouse CD8 (BD PharMingen™, 
USA), or the corresponding isotype controls. Flow cytometry was 
performed on 105 cells using a FACS Calibur flow cytometer (BD 
Biosciences), and data were analyzed using FlowJo version 7.6 
software. Results from 3 independent experiments were expressed 
as means ± SD.

Statistical analysis. We performed statistical analyses using SPSS 
software (version 12.0; SPSS Corp., USA). Quantitative variables 
were tested for normality of distribution. Normal quantitative 
variables such as mean and SD were calculated and analyzed by 
parametric tests. The median and interquartile ranges were also 
calculated and analyzed by non-parametric tests. The figures were 
generated using Microsoft Excel software. Differences with P-values 
≤0.05 were considered statistically significant.

Results

Humoral immune response

Mice were immunized with DNA vaccines containing 
S1-S4 and M1-M3 genes four times at 2-week intervals. To 
determine the humoral responses elicited by these plasmids, 
the titers of mouse sera collected at 1-week intervals were 
tested by ELISA using inactivated R4 as the captured antigen. 
As shown in Fig. 1, all DNA vaccines induced significantly 
higher levels of anti-R4 IgG compared with the controls 

(pcDNA3.1+ and PBS), and titers were highest in mice im-
munized with S3. A continuous increase in antibody levels 
was observed in groups immunized with S1, S3, M2, and 
M3. The S4 group titer peaked at week 5 and then dropped 
precipitously at week 6. In contrast, S2 and M1 group titers 
peaked at 4-th week. However, following the final immuniza-
tion, the M1 group titer dropped at the fifth week and then 
rose the sixth week to the same level as in the fourth week. 
In contrast, the third immunization made no difference in 
M1 and M3 group titers.

The relevant IgG subclass and T-helper (Th) type could 
be critical for protection against a particular disease. The 
production of IgG1 is representative of the Th2 response, and 
IgG2a is typical for the Th1 response. Therefore, 10 days after 
the final immunization, R4-specific antibody subclasses in 
mice sera were determined by ELISA to evaluate the types of 
Th cell responses associated with DNA vaccination (Fig. 2). 

Table 2. Peptides targeting individual reovirus genes

Gene Peptide
S1 QTGSTQPSSTTDPMS
S2 RTKPFTNAQWGRGN
S3 RERLLGQRNLERISTRD
S4 EGWDKTISAQPDMMVC
M1 GWHVPREQLMQDGWC
M2 KPDCPTSGDSGESSNRR
M3 KNVELDALNQRQAKS

Fig. 2

Humoral IgG subclass antibodies induced by DNA vaccines
Antibodies assayed by ELISA 10 days after final immunization.

Fig. 1

Humoral IgG antibodies induced by DNA vaccines
Antibodies assayed by ELISA at 0–6 weeks post immunization.
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The IgG2a, IgG2b, and IgG1 responses were significantly 
different (P <0.001) between the 7 immunized groups and 
the 2 negative groups, excluding the IgG1 response in 
the S1/M3 and S4/M1 groups and the IgG2b response 
in the S3/S4 group (P >0.05). Antibodies produced in all 
immunized animals except for the M2 and S4 groups were 
primarily of the IgG2a subclass. Moreover, the S1 and M3 
groups had nearly 2 and 8–10 times higher IgG2a levels 
than IgG2b and IgG1, respectively. The results of the IgG1 
assays were consistent with those of anti-R4 IgG; however, 
the IgG2a and IgG2b responses of the S3 group were much 
lower than those of the S1 and M3 groups.

Cellular immune response

Cellular immune responses to R4 were assessed by de-
termination of IFN-γ levels, a marker for Th1 responses. 
Splenocytes were collected 10 days after the final immu-
nization and assayed for IFN-γ production. As shown in 
Fig. 3, only a low number of non-specific IFN-γ spots were 
observed in the control groups (<10 of 105 cells). All of 
the recombinant plasmid groups induced at least a 6-fold 
increase of antigen-specific IFN-γ-secreting cells compared 
with the control groups (P <0.001). Interestingly, S1 and 
M2 gene immunization induced a much higher number of 
IFN-γ-specific spots, which may indicate a stronger cellular 
response. Although the humoral response elicited by M2 
was the weakest, the cellular response was the most robust 
of all groups.

As activated CD4+ and CD8+ T lymphocytes are among 
the most crucial components of antiviral effectors, peripheral 
blood mononuclear cells in all immunized groups were as-
sessed by flow cytometry. Unstimulated cells were used to 
standardize the background responses, and there was little 
variation in unimmunized mice. The numbers and percent-

ages of CD4+- and CD8+-activated cells increased in all im-
munized groups (data not shown). The ratio of CD4+/CD8+ 
was higher in the immunized than in the control groups 
(P <0.05) (Fig. 4), and these results were parallel with those 
of the IFN-γ ELISpot assay. Furthermore, S1-immunized 
mice showed the highest CD4+/CD8+ ratio. Overall, the S1 
group had much stronger humoral and cellular responses, 
while the M2 group exhibited the weakest humoral and 
highest cellular responses.

Discussion

Reoviruses are ubiquitous viruses that have been isolated 
from a wide variety of mammalian species including humans, 
but they are not associated with any known diseases and are 
considered benign (Tyler et al., 1996). Reovirus replication 
and assembly are thought to occur within cytoplasmic viral 
inclusions where viral and cellular proteins, viral RNAs, and 
immature and mature viral particles are concentrated (Tyler 
et al., 1996). In the present study, we successfully immunized 
mice against reovirus antigens using a  DNA vaccine and 
demonstrated the presence of humoral and cell-mediated 
immune responses. 

IFN-γ is the principal macrophage-activating cytokine 
and mediates critical functions in innate immunity and 
adaptive cell-mediated immunity. IFN-γ can also promote 
the differentiation of naive CD4+ T cells to the Th1 subset 
and inhibit the proliferation of Th2 cells (Whitmire et al., 
2005). Indeed, we observed much higher IFN-γ secretion 
in response to immunization with M2 and S1; M2 elicited 
a Th1-based immune response in mice, whereas S1 elicited 
a mixed Th1/Th2 response. Th1 cells can elicit phagocyte-
mediated defense against infections; therefore, Th1-domi-
nated immune responses elicited by the M2 gene may be 

Fig. 3

Induction of IFN-γ by DNA vaccines
Mice were sacrificed 10 days after final immunization, their splenocytes 
were stimulated with gene-specific peptides and IFN-γ levels were assayed 
by ELISpot.

Fig. 4

Induction of CD4+ and CD8+ T-cells by DNA vaccines
Peripheral blood mononuclear cells were isolated from mice 10 days after 
final immunization and were assayed for CD4+/CD8+ T-cell ratio (%) by 
flow cytometry. 
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important for virus control. M2 is a virulence gene and could 
contribute to the marked differences found between reovirus 
strains (Coffey et al., 2006; Danthi et al., 2008; Hrdy et al., 
1982; Rubin and Fields, 1980); M2 could also directly affect 
the ability of reovirus to cause disease after introduction into 
the gastrointestinal tract. The S1 and M2 genes are involved 
in receptor binding and penetrating the host cell membrane 
and could determine the capacity of different reovirus strains 
to induce apoptosis (Clarke et al., 2001). In agreement with 
this assumption, in our present study, the vectors express-
ing μ1C (encoded by M2) and σl proteins (encoded by S1) 
were highly immunogenic and could be the most promising 
vaccine candidates against R4.

The predominance of IgG2a in the sera of immunized 
mice in the present study is consistent with the results of 
Coutelier et al. (1987, 1988) and Nguyen et al. (1994), who 
demonstrated that serum antibody response to many viral 
infections (including infection with reovirus TD3) involves 
preferential production of IgG2a. Others have reported that 
immunization with many viral proteins or peptides often 
leads to strong IgG1 antibody responses (Balkovic et al., 
1987; Ben Ahmeida et al., 1992, 1993; Markine-Goriaynoff 
et al., 2000; Smucny et al., 1995). In contrast, Pertmer et al. 
(1996) found that the IgG subclass elicited by DNA vac-
cination depends upon the route of DNA administration; 
i.m. inoculation leads to Th1-like responses due to elevated 
IgG2a levels, whereas gene gun responses tend to cause el-
evated levels of IgG1 (Pertmer et al., 1996). Similarly, mice 
immunized i.m. with DNA vaccines expressing varicella-
zoster virus also produce IgG2a (Stasikova et al., 2003), and 
a DNA vaccine containing SARS coronavirus nucleocapsid 
(N) protein leads to increased levels of IgG2a in mice (Zhao 
et al., 2005). Although the immune response generated by 
a DNA vaccine can be influenced via co-delivery of adjuvant 
containing cytokine genes or by different routes of injec-
tion (Chen et al., 2003; Feltquate et al., 1997; Gurunathan 
et al., 2000; He et al., 2005, 2006; Hung et al., 2007; Kim et 
al., 2001; Nobiron et al., 2001; Osorio et al., 1999; Rogers 
et al., 1999; Saldarriaga et al., 2006; Song et al., 2000, 2008; 
Whitmire et al., 2005). In this study, we injected mice with 
only DNA plasmids by the i.m. route without any adjuvant. 
Therefore, it is unclear whether the quality and specificity of 
immune responses in mice would be different with another 
immunization strategy.

Antibody responses to viruses often serve to neutral-
ize the virus and possibly mediate virus inactivation by 
complement or antibody-dependent cellular cytotoxicity 
(Zinkernagel, 1993). Production of virus-specific IgG2a 
during virus infections could prove advantageous as IgG2a 
is efficient at fixing complement and mediating antibody-
dependent cellular cytotoxicity (Heusser et al., 1977; Klaus 
et al., 1979). Moreover, herpes simplex virus glycoprotein 
D-specific monoclonal IgG2a is more effective at protecting 

infected mice than IgG1 of the same specificity (Ishizaka 
et al., 1995).

The SARS epidemic occurred nearly 10 years ago. Since 
then, in addition to SARS coronavirus (Drosten et al., 
2003; Ksiazek et al., 2003; Peiris et al., 2003; Poutanen et 
al., 2003), other pathogens, including human metapneu-
movirus, chlamydia, and poliovirus Sabin I (Chan et al., 
2003; Louie et al., 2004; Shen et al., 2012) have also been 
detected in some patients with SARS. Moreover, some 
groups identified bats as the reservoir host for a group of 
genetically diverse SARS-like coronaviruses (Li et al., 2005; 
Ren et al., 2006; Wang et al., 2006). Reovirus was isolated 
from bats as well (Chua et al., 2007). It is unclear whether 
microbial or other cofactors could enhance the severity or 
transmissibility of SARS.

In conclusion, we were able to induce humoral and 
cell-mediated immune responses to R4 proteins by im-
munizing mice with DNA vaccines. Expression of the 
M2 and S3 genes elicited Th1- and Th2-based immune 
responses, respectively. In contrast, S1 and M3 constructs 
induced a  mixed Th1/Th2 immune response. To our 
knowledge, this is the first report characterizing mam-
malian reovirus DNA vaccines in a mouse model. Due to 
the safety and ease of manipulation of DNA vaccines, our 
study may provide a convenient strategy for studying the 
immunogenicity of mammalian reovirus genes in other 
animal models.
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