
Acta virologica 57: 3 – 15, 2013 doi:10.4149/av_2013_01_3

Mortalin – a multipotent chaperone regulating cellular processes ranging from 
viral infection to neurodegeneration
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Summary. – Heat shock 70kDa protein 9 (HSPA9)/mortalin is a heat-uninducible member of the heat shock 70 
protein family. This protein has been attributed many cellular functions, including energy generation, stress response, 
carcinogenesis and involvement in neurodegenerative diseases, which is well documented by many names it has been 
given (CSA, MOT, MOT2, GRP75, PBP74, GRP-75, HSPA9B, MGC4500, MTHSP75, and mortalin). As an immor-
talization marker (hence the name “mortalin”) in mouse embryonic fibroblasts cybrids it preferentially segregated 
with loss of immortality in passaged cells. Mortalin regulates the functions of the tumor suppressor protein p53 and 
plays important roles in stress response and maintenance of the mitochondria and endoplasmic reticulum. Further-
more, mortalin appears to have roles in membrane trafficking and viral release regulation, since it interacts with Nef 
protein it is necessary for secretion of exosomal negative factor (Nef) and HIV-1 virus release. Recently, mortalin has 
been described as a significant player in neurodegenerative diseases. Mutations in HSPA9 gene have been found in 
Parkinson΄s disease patients; mortalin isoform expression differs in hippocampus of patients with Alzheimer΄s dis-
ease and could regulate the β-amyloid toxicity pathway. In this review we summarize the functions of mortalin, its 
pathological implications in neuronal dysfunction and possible roles in neurodegenerative diseases.
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1. Introduction

Proteins are crucial to the existence of every cell by ful-
filling the fundamental functions in energy production and 

metabolism, structural stability and flexibility, preservation 
and transmission of genetic information. To fulfil all these 
functions, an average cell of a multicellular organism usually 
expresses around 10,000 different proteins, whose numbers 
are further multiplied by post-translational modifications. 
Proteins can perform all the necessary cellular functions due 
to their exceptional structural versatility and complexity. 
However, the high structural versatility of proteins comes 
with a drawback – the cell has to ensure that the proteins 
are properly folded to their functional structure and has to 
maintain their conformational integrity throughout their 
lifespan. The complex task of maintaining the homeostasis 
of the cellular proteome (“proteostasis”) is performed by 
a sophisticated network of dedicated protein chaperones 
(Hsps), which help with proper folding (and re-folding) 
of nascent protein chains, and ubiquitin-proteasome and 
autophagy systems, which are responsible for the removal of 
misfolded proteins (Hartl et al., 2011; Schwartz and Ciech-
anover, 2009; Sridhar et al., 2012). The functional pathways 
of chaperone, proteasomal and autophagy systems form 
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a complex intertwined network of shared components and/
or mechanisms (e.g. ubiquitination, chaperone function) 
(Cuervo, 2011; Gamerdinger et al., 2011; Shaid et al., 2012). 
Failure of these systems to remove misfolded proteins often 
results in conformational (or protein misfolding) diseases, 
which include cancer, cystic fibrosis and neurodegenerative 
disorders like Alzheimer΄s disease (AD), Parkinson΄s dis-
ease (PD), Huntington΄s disease and amyotrophic lateral 
sclerosis.

Chaperones constitute the first line of proteostasis 
by assisting not only in the proper protein folding but 
also in the formation of multisubunit complexes and 
transport of proteins into organelles (Hartl et al., 2011). 
The crucial role of chaperones in practically all cellular 
processes and pathways has recently been recognized 
and broad scientific interest sprouted in exploitation of 
selected chaperones to treat various diseases including 
atherosclerosis (Xu et al., 2012), cancer (Mahalingam 
et al., 2009), neurodegenerative diseases (Koren et al., 
2009), cardiovascular diseases (Ghayour-Mobarhan et 
al., 2009), motor neuron diseases (Adachi et al., 2007) 
and viral infections (Beck and Nassal, 2007; Brodsky and 
Chiosis, 2006).

In this review we focus on HSPA9, a heat-uninducible 
member of the heat shock 70 kDa protein family of chaper-
ones, whose pleiotropic roles range from cell proliferation, 
organellar proteostasis, apoptosis, vesicular transport of 
proteins and neurodegenerative diseases (Deocaris et al., 
2009). 

Mortalin, also known as mtHsp70/PBP74/Grp75/ 
HSPA9, was first identified as a member of the Hsp70 
protein family and was detected in the cytoplasmic 
fractions of normal CD1-ICR mouse fibroblasts. (Bhat-
tacharyya et al., 1995b; Domanico et al., 1993; Kaul et al., 
1993; Wadhwa et al., 1993a). Mortalin is a house-keeping 
mitochondrial protein, coded by the nuclear gene HSPA9B 
(GeneID, 3313) on chromosome 5q31.1. (Bhattacharyya 
et al., 1995a). It is a 679 amino acid protein that has 
been found in multiple subcellular localizations such 
as the endoplasmic reticulum, mitochondria, Golgi ap-
paratus, cytoplasmic vesicles and the cytosol (Ran et al., 
2000; Wadhwa et al., 1995). According to its subcellular 
localisation it has multiple binding partners including 
p53, FGF-1, IL-1 receptor type1, GRP94, VDAC, NADH 
dehydrogenase, MPD, Mge1 Tim44 and Tim23, and is 
involved in diverse molecular pathways (Mizukoshi et al., 
1999; Sacht et al., 1999; Schwarzer et al., 2002; Takano et 
al., 2001; Wadhwa et al., 1998, 2003). The protein levels 
of mortalin correlate with muscle activity and mitochon-
drial biogenesis and the protein is inducible by ionizing 
radiation, ozone, glucose deprivation (thereby identified 
as Grp75), calcium and thyroid hormone (Craig et al., 
1998; Resendez et al., 1985; Sadekova et al., 1997).

2. Mortalin and mitochondria

Mitochondria represent the powerhouse of cells. They are 
responsible for ATP production and oxidative phosphoryla-
tion, they are involved in cell survival, have a central role 
in ageing, participate in buffering of calcium ions, lipid 
metabolism and synthesis of iron-sulphur clusters (Murgia 
et al., 2009). A great majority of the mitochondrial proteins 
are responsible for the energy production synthesized in 
cytosol, so they have to be imported into mitochondria 
(Harsman et al., 2011). 

Mortalin/HSPA9/mtHsp70 is one of the proteins that 
actively participate in the import of mitochondrial proteins 
through the mitochondrial membrane into the mitochondrial 
matrix. The majority of cellular mortalin is located within 
the mitochondrial matrix (Burbulla et al., 2010). The protein 
reaches this location after its import via the translocases of 
the mitochondrial outer and inner membranes (Rehling et 
al., 2004; Webster et al., 1994). Studies focused on explanation 
of the molecular mechanism of the mitochondrial transport 
system in yeast revealed that mortalin homologue SSC1p is an 
essential mitochondrial protein (Strub et al., 2000). It is bound 
to the mitochondrial translocation canal on the matrix side 
of the mitochondrial membrane as a core of the presequence 
translocase-associated motor (D΄Silva et al., 2004; Chacinska 
et al., 2009). Two energy sources are required for import of 
precursor proteins across the mitochondrial inner membrane 
into the matrix (Jensen and Johnson, 1999; Neupert, 1997; 
Pfanner et a.l, 1997). One is the electrical potential gradient 
across the inner membrane, which induces translocation of 
the amino-terminal signal sequences (presequences) of the 
preproteins across the membrane, and ATP utilized by mor-
talin to promote further translocation of the preprotein in 
transit and its re-folding in the mitochondrial matrix (Bukau 
and Horwich, 1998; Ellis and van der Vies, 1991; Geissler et 
al., 2001; Kang et al., 1990). To facilitate translocation of the 
proteins, mortalin cooperates with Tim44, a peripheral subu-
nit of the translocase of the inner membrane  (Kronidou et al., 
1994; Schneider et al., 1996) and Mge1, a nucleotide-exchange 
cofactor (Schneider et al., 1996; von Ahsen et al., 1995). The 
mitochondrial precursor proteins are translocated into the 
mitochondrial matrix by mortalin, using an ATP-dependent 
mechanism with the assistance of co-chaperones (Scherer et 
al., 1992; Voos and Rottgers, 2002). The matured proteins are 
subsequently transferred to Hsp60, which allows proteins to 
refold back, assemble, sort and finally perform their functions 
(Wadhwa et al., 2005). 

3. The role of mortalin in cancer 

Cancer is a collective name for a group of diseases 
characterized by unregulated division of cells, which form 
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tumors and invade various parts of the body. Chaperones 
play a significant role in cancer. They possess the ability 
to rescue cells under chaotic cellular situations and are re-
sponsible for protein homeostasis where they interact with 
unfolded (nascent) or misfolded (denatured) proteins while 
preventing their aggregation (Gosslau et al., 2001). Those 
reparation mechanisms ensure the normal cell environment 
(Lu et al., 2011). Recently it was shown that mortalin is 
involved in tumor processes, but the molecular mechanism 
remains unclear. Immunostaining analysis of normal and 
immortal cells with a specific mortalin antibody revealed 
that mouse mortalin is distributed in the cytoplasm of nor-
mal cells and in the perinuclear region in immortal mouse 
cells (Kaul et al., 2003). It turned out that mortalin cDNA 
encodes two isoforms of mortalin, mot-1 is localised in the 
cytoplasm and mot-2 is localized in the perinuclear region 
(Wadhwa et al., 1993d). These isoforms differ in two amino 
acids (Val618 and Arg624 in mot-1 are replaced by Met and 
Gly in mot-2, respectively) and have contrasting biological 
activities. The mot-1 cDNA, encoding the pancytoplasmic 
form of mouse mortalin, induces cellular senescence-like 
phenotype in NIH 3T3 cells (Wadhwa et al., 1993d). In 
contrast, overexpression of mot-2, the perinuclear protein, 
resulted in malignant transformation of NIH 3T3 cells (Kaul 
et al., 1998). Analysis of the mortalin expression in rat tis-
sues revealed that the non-dividing cell populations such as 
neurons, nerve fibres and heart muscle cells have a higher 
expression of mortalin compared to glial cells, endothelial 
cells and ovarian follicles (Kaul et al., 1997). Elevated lev-
els were also detected in cells with an immortal divisional 
phenotype, in tumors (Chen et al., 2011). Different types of 
tumor tissue, the tumor-derived or in vitro immortalized 
cells exhibit higher expression levels of mortalin compared 
to normal primary cells (Wadhwa et al., 2006). Recently, it 
has been demonstrated that mortalin translocates into the 
nucleus, where it interacts with the retinoic acid receptor to 
augment retinoic acid -elicited neuronal differentiation (Shih 
et al., 2011). Interestingly, mortalin is upregulated in retinoic 
acid-treated neuroblastoma cells and in patients suffering 
from neuroblastoma (Hsu et al., 2008). Experimental studies 
confirmed that mortalin interacts with the cellular protein 
p53 (Wadhwa et al., 1998; Mizukoshi et al., 2001; Wadhwa 
et al., 2003). p53 is a tumor suppressor protein (Isobe et 
al., 1986; Matlashewski et al., 1984), it is synthesized in the 
cytoplasm and becomes translocated to the nucleus to exert 
its sequence-specific transcription factor and cell cycle regu-
latory functions (May and May, 1999; Vousden and Woude, 
2000), including activation of DNA repair (Hupp and Lane, 
1995), induction of growth arrest at the G1/S regulation point 
upon DNA damage and initiation of apoptosis (Bates et al., 
1998). Mutation in the p53 gene results not only in the loss of 
p53 function but also in gain of oncogenic functions (Dittmer 
et al., 1993). Recently, it was observed that p53 contributes 

to the regulation of the mitochondrial membrane potential 
by interactions with the mitochondrial proteins Bcl2 and 
mortalin (Leu et al., 2004; Mihara et al., 2003; Murphy et al., 
2004; Perfettini et al., 2004). The co-localisation of mortalin 
and p53 was detected in the perinuclear region in many 
types of cancer cells (human colorectal adenocarcinomas, 
glioblastomas and hepatocellular carcinomas) such as NIH 
3T3 (murine fibroblasts, wt p53), Balb/3T3 (immortalized 
cell line), HeLa (cervical carcinoma, wt p53), A2182 (blad-
der carcinoma, wt p53), U2OS (osteosarcoma, wt p53), 
A172 (glioblastoma, wt p53), NT-2 (teratocarcinoma, wt 
p53), SY-5Y and YKG-1 (neuroblastoma, wt p53), COS7 
(monkey kidney), MCF7 (breast carcinoma) (Wadhwa et 
al., 2003) and human adenocarcinoma cell lines (Sadekova 
et al., 1997). The interaction between mortalin and p53 is 
provided through the mortalin N-terminal region and the 
carboxy terminus (aa 312-352) region of p53 protein (Kaul 
et al., 2001; Wadhwa et al., 1998, 2002b). This interaction 
leads to the cytoplasmic sequestration of p53 (Kaul et al., 
2005; Lu et al., 2011) resulting in p53 functional inactivation, 
inhibition of the transcriptional activation and cell immor-
talisation (Wadhwa et al., 2002a). Sequestration of p53 in the 
cytoplasm enhances its degradation by the MDM2-mediated 
proteasome degradation pathway (Kaul et al., 2005). They 
showed that peptide containing amino acids 323–352 of 
p53 displaced p53 from the cytoplasmic complexes with 
mortalin and increased its nuclear localisation and induced 
growth arrest of human osteosarcoma and breast carcinoma 
cells. They confirmed the co-localisation of those peptides 
with mortalin. Similar results were obtained using mortalin 
inhibitor, MKT-077 (Walker et al., 2006). Treatment with 
MKT-077, a cationic rhodocyanine dye, induced transloca-
tion of p53 back to the nucleus (Walker et al., 2006). Widodo 
and co-workers reported that the treatment of cancer cells 
with an extract of the Indian shrub ashwagandha, which 
was reported to have anticancer activity, induced death of 
cancer cells in a p53-dependent manner (Widodo et al., 
2007). Detailed studies showed that withanone, a compound 
isolated from the ashwagandha shrub, induced the dissocia-
tion of the mortalin-p53 complex, nuclear translocation of 
p53 and functional reactivation of p53 in human cancer cells 
(Grover et al., 2012). The function of mortalin in malignant 
cell division was confirmed by silencing experiments using 
mortalin-specific small interfering RNA (siRNA) expressed 
from adeno-oncolytic viruses (Yoo et al., 2010). Yoo and 
co-workers showed the potency of mortalin-specific siRNA 
to enhance apoptosis and suppress angiogenesis, which was 
caused by reactivation of p53 functions by releasing it from 
the complex with mortalin (Yoo et al., 2010). 

The key role of mortalin in cancer severity and poor 
prognosis has been recently showed by proteomic analysis 
of early-recurring hepatocellular carcinoma tissues (Yi 
et al., 2008). The study found mortalin overexpression in 
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hepatocellular carcinoma and that this increased expres-
sion was closely associated with advanced tumor stages and 
venous infiltration, connected to increased malignancy and 
aggressive behaviour.

Thus, cytoplasmic mortalin inactivates tumor suppressor 
p53 protein by direct binding, which results in cell immor-
talisation and tumorigenesis. Prevention of the sequestra-
tion of p53 in cytoplasm by peptides or mortalin inhibitors 
provides a potential therapeutic opportunity in treatment 
of a number of aggressive and drug-resistant cancers (Deo-
caris et al., 2009). Furthermore, mortalin might also serve 
as a diagnostic biomarker for the cancer surveillance after 
surgery.

4. Role of mortalin in endocytosis

Endocytosis is used by cells to compartmentalize com-
ponents of the plasma membrane and extracellular space 
into intracellular vesicles that are further distributed into 
cell compartments (Lakadamyali et al., 2006; Mayor and 
Pagano, 2007). Endocytosis regulates signalling pathways 
responsible for cell motility and cell fate determination 
and is currently exploited for the delivery of therapeutic 
molecules. Interestingly, the same process is often used by 
microbial and viral intruders for infection (Luo, 2012; Schel-
haas et a.l, 2012). Endocytosis pathways can be subdivided 
into four categories: clathrin-mediated endocytosis, ca-
veolae, macropinocytosis and phagocytosis (Mukherjee 
et al., 1997; Parton and Simons, 2007). Recently, it was 
shown that mortalin has a role in endocytosis mediated by 
heparan sulphate proteoglycans (HSPGs) (Wittrup et al., 
2010). HSPGs represent a protein family substituted with 
polysulfated heparan sulphate polysaccharides, and have 
a key role in the endocytic uptake of macromolecular drugs, 
growth factors and morphogens (Belting, 2003; Belting et 
al., 2002, 2005; Mislick and Baldeschwieler, 1996). Wittrup 
and co-workers used anti-heparan sulphate antibody-coated 
magnetic nanoparticles to isolate endocytic vesicles in order 
to identify proteins associated with this endocytic pathway. 
Proteomic analysis of the vesicular fraction showed enrich-
ment of mortalin suggesting its role in the pathway, which 
was confirmed by microscopic observations (Wittrup et al., 
2010). Functional analysis revealed that RNAi-mediated 
downregulation of mortalin expression or its inhibition with 
anti-mortalin antibody resulted in severe reduction in the 
internalization of the magnetic nanoparticles. Furthermore, 
anti-mortalin antibody also inhibited HIV TAT-peptide me-
diated DNA delivery to cells. Finally, mortalin was observed 
on the surface of cells and inside of endocytic vesicles. Thus, 
mitochondrial chaperone mortalin plays an important (yet 
unknown) role in nonclassical endocytic pathway involv-
ing macromolecular uptake through cell-surface heparan 

sulphate proteoglycans (Wittrup et al., 2010). Since mortalin 
is not the only intracellular chaperone that appears on the 
cell surface (Robert et al., 1999), it is supposed that the role 
of chaperones in endocytosis involves facilitating protein-
protein interactions in cholesterol-rich membrane regions 
resulting in membrane deformation, in the recruitment of 
other participating proteins or by providing a scaffold dur-
ing endocytosis. 

5. Mortalin in exocytosis

Exocytosis provides for the release of enzymes and other 
proteins that act in other areas of the cell or body, or the 
release of molecules that help cells communicate with each 
other (Bacsi et al., 2001). The membrane-bound vesicles can 
be generated inside endosomes (exosomes) or bud directly 
from the plasma membrane (ectosomes) (Fevrier and Rap-
oso, 2004; Schneider and Simons, 2012). Multivesicular bod-
ies, which are formed inside endosomes by budding from the 
limiting membrane into the lumen of endosomes, can fuse 
with lysosomes and enter the degradation pathway (Pelk-
mans and Helenius, 2003) or fuse with the plasma membrane 
where the internal vesicles are released from multivesicular 
bodies into the extracellular space as exosomes (Culp and 
Christensen, 2004). These membrane-bound vesicles contain 
soluble proteins and nucleic acids, which need to be secreted 
to the extracellular environment or transported into target 
cells, as well as membrane proteins and lipids that are sent 
to become components of the cell membrane (Schneider 
and Simons, 2012). 

Shelton and co-workers identified mortalin as a protein 
functionally involved in exocytosis (Shelton et al., 2012). 
They analyzed proteins involved in exocytosis of viral protein 
Nef, a 27-kDa protein produced in the early stages of HIV 
infection (Kim et al., 1989). The protein is myristoylated and 
its interactions with membranes and host cell proteins are 
central to its many effects in cells (Shelton et al., 2012). Nef 
is secreted out of the cell (Fujii et al., 1996) and is implicated 
in viral pathogenesis and is one of the candidate proteins 
that might induce apoptosis in bystander CD4+ T-cells (An-
nunziata, 2003; Calenda et al., 1994; Campbell et al., 2008). 
Secreted Nef can induce apoptosis via the CXCR4 receptor 
on the cell surface (James et al., 2004). Shelton and cowork-
ers identified proteins involved in Nef secretion that bind 
to the secretion modification region of Nef. Beside the fact 
that Nef induces its own secretion in exosomes (Fevrier and 
Raposo, 2004), the authors identified mortalin as a specific 
cellular protein interacting with Nef (Shelton et al., 2012). 
It is known that mortalin binds directly to several proteins 
and regulates their intracellular trafficking (Iosefson and 
Azem, 2010; Kaul et al., 2005). The interaction of mortalin 
with Nef is required for Nef secretion, since both reduction 
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of mortalin protein levels and inhibition of Nef-mortalin 
interaction either by anti-mortalin antibody or by secretion 
modification region-derived peptides drastically reduced Nef 
secretion (Shelton et al., 2012). 

Independent of these studies, mortalin was found to 
mediate the resistance of cells to membrane attack complex 
(MAC), the effector of innate and acquired immune respons-
es (Pilzer et al., 2005). The resistance is achieved either by 
internalization of the membranes with MAC in endosomes 
and their degradation or by ectosomal release of membrane 
particles containing MAC. It has been proposed that mor-
talin is involved in the ectocytic release of MAC-containing 
complexes (Pilzer et al., 2005). Since mortalin/PBP74 is able 
to present antigens to T cells (Kim et al., 1995; Vanbuskirk 
et al., 1989) and membrane vesicles released after sublytic 
complement attack may contain mortalin-protein/peptide 
complexes, the authors proposed that, like MHC-loaded 
exosomes, mortalin-loaded membrane vesicles may play 
a role in the regulation of normal and pathological immune 
responses (Pilzer et al., 2005). 

Thus, mortalin appears to play multiple roles in mem-
brane-mediated macromolecular transport, endocytosis, 
and exocytosis and perhaps in ectocytosis. Mortalin might 
serve as a promising target for anti-HIV therapy by reduc-
ing the release of Nef (and perhaps other viral proteins), for 
the modulation of immune response via ectosomes, and 
further possible roles in coagulation, vascular functions, 
angiogenesis, wound healing, and development (Martinez 
et al., 2005; Morel et al., 2004; Pilzer et al., 2005; Shelton et 
al., 2012; Wittrup et al., 2010).

6. Mortalin and neurodegenerative diseases

Neurodegeneration is a progressive loss of structure 
or function of neurons, often resulting in death of neu-
rons. Neurodegenerative diseases such as AD and other 
tauopathies, PD, Huntington disease, frontotemporal lobar 
degeneration and amyotrophic lateral sclerosis are character-
ized by accumulation of misfolded proteins in the form of 
pathological deposits and selective neuronal vulnerability 
resulting in degeneration in specific brain regions. These 
diseases are therefore called protein misfolding disorders. 
AD is the most common form of dementia. Histopatho-
logically it is characterized by accumulation of misfolded 
proteins in the form of insoluble fibrous material: extracel-
lular senile plaques and intracellular neurofibrillary deposits. 
Both result from aberrant folding of proteins, senile plaques 
composed of beta-amyloid (Aβ) (Glenner and Wong, 1984) 
and neurofibrillary deposits (or tangles, NFT) composed 
of the tau protein (Grundke-Iqbal et al., 1986; Wischik et 
al., 1988). The interplay between tau and Aβ, the cleavage 
product of amyloid precursor protein, is still not clear. Both 

pathological proteins exhibit toxic properties in vitro and in 
vivo (Eckermann et al., 2007; Rapoport et al., 2002; Roberson 
et al., 2007; Spillantini et al., 1998; Spillantini and Goedert, 
1998; Zilka et al., 2006). 

Recently, mortalin was suggested to have a protective 
function against neurodegeneration (Burbulla et al., 2010; 
Wadhwa et al., 2002a). Mortalin is primarily localised in 
mitochondria. Mitochondria are dynamic organelles that 
actively move within the axons to ensure adequate energy 
supply in energy-hungry neurons (Trushina et al., 2012). 
It is supposed that impaired mitochondrial biogenesis 
contributes to the development of neurodegenerative dis-
eases. Damages in mitochondria were found in all brain 
regions of AD patients, as well as in Aβ transgenic mouse 
models, cell lines expressing Aβ or cells treated with Aβ 
(Hirai et al., 2001) and in a rat model of tauopathy (Cente 
et al., 2009; Cente et al., 2006; Filipcik et al., 2009; Zilka et 
al., 2006). Mitochondrial dysfunction was associated with 
increased levels of reactive oxygen species (Mancuso et 
al., 2010). This intracellular mitochondrial oxidative stress 
contributed to tau hyperphosphorylation in the transgenic 
model expressing human mutant tau and Tg2576:sod2 mice 
(Melov et al., 2007). Proteomic analysis of protein oxida-
tion in different brain regions of ApoE-knockout animals 
showed that total protein oxidation in the hippocampus 
of the transgenic animals was approximately 2-fold higher 
than in control animals (Choi et al., 2004). Mortalin was 
identified as one of the six oxidation-sensitive proteins by 
using two-dimensional electrophoresis coupled with im-
munostaining for protein carbonylation (Choi et al., 2004). 
Differential protein expression analysis of human AD brain 
samples revealed differentially expressed mortalin isoforms 
(Osorio et al., 2007). One of the mortalin isoforms was 
increased within AD hippocampi compared to the nor-
mal tissue. For further analysis the authors concentrated 
on the effect of ApoE alleles ApoE3 and ApoE4 on gene 
expression. These alleles are known to be either associated 
with significantly increased risk of Alzheimer΄s disease in 
human population (ApoE4) or to have a rather protective 
role (ApoE3) (Keene et al., 2011). The authors generated 
a transgenic mouse models by replacing the endogenous 
mouse ApoE with either human ApoE4 or ApoE3 allele 
(Osorio et al., 2007). Mortalin was the only protein that was 
found to be differentially expressed in ApoE4 transgenic 
mice hippocampus compared to ApoE3 mice. Moreover, 
different phospho-isoforms of mortalin have been found 
as well (Osorio et al., 2007). In another study a significant 
upregulation of mortalin gene expression was observed in 
PC12 cells overexpressing amyloid precursor protein (Kogel 
et al., 2005). Significantly, overexpression of mortalin in 
the neuroblastoma cell line SH-SY5Y conferred protection 
against Aβ(1–42) - induced neurotoxicity (Qu et al., 2011). 
Exposure to sub-lethal levels of Aβ(1-42) led to defects in the 
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import of mortalin and other components of the import 
machinery into mitochondria, which resulted in decreased 
mitochondrial membrane potential, increase in the levels 
of reactive oxygen species (ROS), increased vulnerability 
to oxygen-glucose deprivation and altered mitochondrial 
morphology (Sirk et al., 2007). Increased levels of mortalin 
were shown to protect cells against Aβ(1-42)-induced depo-
larization of mitochondrial membrane potential, reversed 
the reduction in cytochrome c oxidase activity and suppres-
sion of mitochondrial apoptotic cascade, and suppressed 
the Aβ(1-42)-induced reactive oxygen species accumulation 
and lipid peroxidation (Qu et al., 2011, 2012). 

Changes in the levels of mortalin were related with the 
toxic effect of rotenone on dopaminergic neurons in PD 
(Jin et al., 2006). PD belongs to the group of neurodegen-
erative disorders and is characterised by the degeneration 
of dopaminergic neurons in the substantia nigra pars 
compacta and the presence of Lewy bodies in the remain-
ing nigral neurons (Braak et al., 2003; Samii et al., 2004). 
Decreased levels of mortalin were found in brains of PD 
patients as well as in a cellular model of PD in the isolated 

mitochondrial fraction (Jin et al., 2006). Moreover, it was 
confirmed that mortalin interacts with the PD-related 
proteins DJ-1 and α-synuclein in cultured cells (Jin et al., 
2007; Liu et al., 2005). 

The role of mortalin in the etiology of PD was further 
supported by identification of three alleles of the mortalin 
gene associated with PD: two missense (R126W and P509S) 
and 17 bp insertion in intron 8 (De Mena et al., 2009). The 
fourth mortalin variant (A476T) was later identified in 
German PD patients (Burbulla et al., 2010). To define the 
function of these PD-associated mortalin variants, the au-
thors overexpressed all four in neuronal and non-neuronal 
cellular models. The disease-associated variants exhibited 
normal import into mitochondria, but caused a mitochon-
drial phenotype manifested by an increase of ROS levels in 
cells producing mortalin variants, as well as reduced mito-
chondrial membrane potential compared to control cells 
overexpressing wt mortalin. 

Chiasserini and coworkers have analyzed mortalin ex-
pression in a Parkinson΄s disease rat model generated by 
inhibiting mitochondrial complex I by injecting 6-hydroxy-
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dopamine into the medial forebrain bundle (Chiasserini 
et al., 2011). Using different proteomic approaches they 
investigated the role of mortalin in both the physiological 
and the parkinsonian states and confirmed down regula-
tion of mortalin in the treated rats in comparison with 
sham-operated animals (Chiasserini et al., 2011). MKT-077, 
a mortalin inhibitor, caused electrophysiological changes 
in the striatal medium neurons and confirmed the role of 
mortalin in neuronal homeostasis. Finally, mortalin was 
found to be a target of covalent modification by oxidized 
dopamine (Van Laar et al., 2008, 2009). 

7. Conclusion

Chaperones are the most highly conserved protein family 
and perform essential functions in cells (Lindquist and Craig, 
1988). They help in protein homeostasis, stress response and 
degradation of aggregated and misfolded proteins, but they 
also take part in normal cellular processes (Hartl et al., 2011; 
Schwartz and Ciechanover, 2009; Sridhar et al., 2012). 

Multifunctional heat shock protein mortalin (Wadhwa 
et al., 1993b) is involved in a plethora of pathways in cells 
(Fig. 1). Mortalin is localised predominantly in the mito-
chondria, where it is a part of the ATP-dependent mitochon-
drial protein import machinery (D΄Silva et al., 2004), but 
its presence was detected in the endoplasmatic reticulum, 
Golgi network, exosomes and on the surface of the plasma 
membrane (Deocaris et al., 2007; Pilzer et al., 2005; Shelton 
et al., 2012; Wadhwa et al., 1993c). 

Discoveries that mortalin plays a role in exocytosis and 
release of viral proteins open several novel connections to 
neurodegenerative diseases. For example, recently, it was 
found that neuronal protein tau is released from living 
neurons in exosomes (Lee et al., 2012; Saman et al., 2012), 
and this secretion is assumed to help spread tau pathology 
throughout the Alzheimer΄s disease brain (Clavaguera et al., 
2009; Frost et al., 2009). Since mortalin isoform expression is 
altered in AD brains (Osorio et al., 2007), it could influence 
the composition of exosomal vesicles and contribute to the 
exosomal release of pathological tau proteins.

In sporadic AD, the herpes simplex virus 1 (HSV-1) is 
suspected to play a role in the disease (Itzhaki and Wozniak, 
2008). After a primary infection, the virus becomes latent 
mainly in the ganglia but viral DNA can be found in the 
neurons of several areas of the central nervous system (Ca-
brera et al., 1980; Drummond et al., 1994). The reactivation 
of HSV-1 in the brain by stress factors (Drummond et al., 
1994; Kastrukoff et al., 1981; Whitley, 1996) might contribute 
to neurodegenerative development. Itzhaki and coworkers 
suggest that HSV-1 in the brain and the presence of the 
apolipoprotein E allele 4 (the recognized risk factor for AD) 
together confer high risk for AD (Lin et al., 2002). Studies on 

neuropathological features of HSV-1 demonstrated that the 
viral infection of human neuronal cells in culture causes an in-
crease in intracellular levels of both Aβ (Piacentini et al., 2011; 
Santana et al., 2012; Wozniak et al., 2007) and phosphorylated 
tau (Lerchundi et al., 2011; Wozniak et al., 2009; Zambrano 
et al., 2008). Furthermore, HSV-1 triggers AD-like cas pase-3 
activation and tau cleavage (Lerchundi et al., 2011). 

Where is the connection to mortalin? Cellular antioxidant 
chaperone Hsp27 enhances replication of the herpesvirus, 
most likely due to the increased oxidative stress in cells 
caused by viral infection (Mathew et al., 2009, 2010). The 
oxidative stress, one of the hallmarks of neurodegenerative 
diseases like AD and PD, is connected to mitochondrial 
dysfunction (Mancuso et al., 2010). In a cellular model oxida-
tive stress can be prevented by increased levels of mortalin 
(Qu et al., 2011, 2012). Thus, interplay between herpesvirus 
re-activation and secondary infections, oxidative stress, mi-
tochondrial dysfunction and altered levels of mortalin in AD 
provide a new paradigm for identification of pathomecha-
nisms leading to AD and also to other neurodegenerative 
disorders.
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