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Summary. – Th e protein-protein interactions between viral and host proteins play an essential role in plant 
virus infection and host defense. Th e potyviral nuclear inclusion protein a protease (NIa-Pro) is involved in 
various steps of viral infection. In this study, the host proteins interacting with papaya ringspot virus (PRSV) 
NIa-Pro were screened in a Carica papaya L. plant cDNA library using a Sos recruitment two-hybrid system 
(SRS). We confirmed that the full-length EIF3G, FBPA1, FK506BP, GTPBP, MSRB1, and MTL from papaya 
can interact specifically with PRSV NIa-Pro in yeast, respectively. Th ese proteins fufi ll important functions in 
plant protein translation, biotic and abiotic stress, energy metabolism and signal transduction. In this paper, 
we discuss possible functions of interactions between these host proteins and NIa-Pro in PRSV infection and 
their role in host defense.
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Introduction

Papaya ringspot virus (PRSV, the genus Potyvirus, the 
family Potyviridae) is considered to be the most destruc-
tive virus that occurs in almost all papaya plantations of 
the world (Gonsalves, 1998). PRSV genome has a positive-
sense single-stranded RNA of 10,323–10,326 nt in length 
and encodes a 381-kDa polyprotein, which is processed 
into one structural and nine non-structural proteins via 
three virus-encoded proteinases named P1 protein (P1), 

helper component proteinase (HC-Pro) and NIa-Pro (Yeh 
and Gonsalves, 1985; Yeh et al., 1992). As a multifunctional 
proteinase, potyviral NIa-Pro has been intensively studied. 
NIa-Pro is a trypsin-like cysteine protease that cleaves 
the virus polyprotein at seven distinct locations and has 
independent nuclear localization signals that allow it to 
accumulate in the nucleus (Kang et al., 2001; Hajimorad et 
al., 1996). NIa-Pro also has RNA binding and nonspecifi c 
DNase activity, suggesting its involvement in virus rep-
lication and host cell DNA degradation in later stages of 
infection cycle (Daros and Carrington, 1997; Anindya and 
Savithri, 2004). Furthermore, it is reported that PVY NIa-
Pro acts as an elicitor by its structure binding to or cleav-
age of host-encoded protein (s) to elicit the Ry-mediated 
disease resistance in potato (Mestre et al., 2000, 2003). 
Th ere are two types of PRSV: type P, which infects papaya 
and cucurbits, and type W, which infects cucurbits but not 
papaya (Roy et al., 1999). Th e amino acid Lys27 of NIa-Pro 
determines host specifi city of PRSV for papaya infection 
(Chen et al., 2008). Th us, NIa-Pro as a multifunctional 
protein would be expected to involve multiple interactions 
with diff erent host factors.
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Host proteins play important roles in viral infection cycle 
and can interact with potyviral proteins to allow or over-
come viral infection. Th e discovery of interacting plant and 
viral proteins can help to elucidate molecular mechanisms 
of viral infection and host defense. Previously, the yeast 
two-hybrid system has been used to identify host proteins 
that interact with potyviral proteins such as P1 (Shi et al., 
2007), HC-Pro (Jin et al., 2007; Cheng et al., 2008; Shen 
et al., 2010; Ala-Poikela et al., 2011), viral genome-linked 
protein (VPg) (Léonard et al., 2000; Léonard et al., 2004; 
Khan et al., 2006; Michon et al., 2006), cylindrical inclu-
sion body (Jiménez et al., 2006), nuclear inclusion protein 
b (Dufresne et al., 2008) or coat protein (McClintock et al., 
1998; Feki et al., 2005; Hofi us et al., 2007). However, little 
is known about the host proteins that interact with the 
NIa-Pro protein. In this study, PRSV NIa-Pro protein was 
used as a bait to screen a cDNA library of papaya plants 
using SRS in yeast cytoplasm (Broder et al., 1998). Finally, 
we confi rmed that six diff erent host encoded proteins from 
the papaya cDNA library, with high sequence identity to 
the eukaryotic translation initiation factor 3G protein 
(EIF3G), fructose 1, 6 bisphosphate aldolase class 1 protein 
(FBPA1), fk 506-binding protein (FK506BP), GTP-binding 
family protein (GTPBP), methionine sulfoxide reductase B1 
protein (MSRB1) and metallothionein-like protein (MTL), 
can interact specifi cally with PRSV NIa-Pro in yeast. Fur-
thermore, we discuss the possible function of these host 
proteins in PRSV infection and host defense.

Materials and Methods

Virus isolates and plant materials. PRSV-P isolate HN (Lu et al., 
2008) was isolated in our laboratory. C. papaya L. seedlings, with 
7–8 true leaves, were kept at 28°C in a greenhouse under a 16 hrs 
photoperiod and 8 hrs darkness cycle.

NIa-Pro bait plasmid construction. Th e complete nucleotide 
sequence encoding the NIa-Pro protein was amplified by PCR 
from full-length cDNA of PRSV-P isolate HN (GenBank Acc. 
No. EF1834997) using primers NP-F and NP-R (Table 1) (Lu 
et al., 2008). Th e PCR product was digested and subcloned into 
the BamHI/SacI site of the bait vector pSos (Leu+) (Stratagene, 
USA), to be fused with the hSos sequence, resulting in pSos-NP 
construct. Th e accuracy of the NIa-Pro fusion junction sequence 
and the reading frames in the bait vector were identifi ed by DNA 
sequencing.

Papaya cDNA library construction. Total RNA was extracted 
from three whole healthy C. papaya L. plants at the 7–8 leaf 
stage using TRIzol (Invitrogen, USA). Poly (A)+-RNA (5.0 μg), 
isolated with an Oligotex mRNA kit (Qiagen, Germany), was used 
for cDNA synthesis. cDNAs larger than 500 bp as EcoRI-XhoI 
fragments were inserted into the pMyr vector (Ura+) (Strata-
gene, USA) to be expressed with a myristoylation signal, which 

anchors the proteins in the membrane. Th e pMyr-cDNAs were 
transformed into XL10-Gold Kan super-competent Escherichia 
coli cells (Stratagene, USA), as described in the CytoTrap™ XR 
Library Construction Kit instruction manual (Stratagene, USA). 
Th e cDNA library plasmids were isolated using a Plasmid Maxi 
kit (Qiagen, Germany).

Screening of the papaya cDNA library using SRS. Th e yeast 
cdc25H strains co-transformed with pMyr-cDNA library plasmids 
(40 μg) and pSos-NP plasmids (40 μg) were initially selected by 
plating onto SD/glucose (–UL) at room temperature (22–25°C) 
for 48 hrs, as detailed in the manufacturer’s instructions (Strata-
gene, USA); the transformants were then replica-plated onto SD/
galactose (–UL) plates using velvet pads to induce the expression 
of the Sos-NIa-Pro bait at 37°C. Aft er 6 days, the growing colonies 
(candidate for protein interaction) were picked up and resuspended 
in sterile H2O. Resuspended co-transformants were patched (dot-
ted) onto SD/glucose (–UL) plates using a pin multi-blot replica-
tor and incubated for 2 days at 25°C. Putative positives were then 
identified among the candidates by two rounds of patching cell 
tests for growth on SD/galactose (–UL) or SD/glucose (–UL) plates 
for 6 days at either 25°C or 37°C. Meanwhile, cdc25H yeast cells 
co-transformed with either pSos-MAFB /pMyr-MAFB (Stratagene, 
USA) or pSos-MAFB/ pMyr-Lamin C (Stratagene, USA) were used 
as standard positive and negative controls, respectively, in all two-
hybrid assays. Finally, the pMyr plasmids were isolated from yeast 
positive protein interaction candidates and amplified in E. coli for 
DNA sequence analysis; further retransformation of the plasmids 
with the pSos-NP bait construct into yeast cells was conducted as 
a false positive test.

Positive clone analysis and acquisition of the full-length cDNAs. Aft er 
sequencing, the positive clones were analyzed and classifi ed by using 
a BLAST search of the GenBank database. To obtain the full-length 
cDNAs of PaEIF3G, PaFBPA1, PaFK506BP, PaGTPBP, PaMSRB1, 
and PaMTL, RT-PCR were carried out using the primers PaEIF3G-F/
PaEIF3G-R, PaFBPA1-F/PaFBPA1-R, PaFK506BP-F/PaFK506BP-R, 
PaGTPBP-F/PaGTPBP-R, PaMSRB1-F/PaMSRB1-R, and PaMTL-F/
PaMTL-R, respectively (Table 1). Th e specific primers were de-
signed according to the sequence alignment with whole-genome 
shotgun reads (wgs) of C. papaya L. in GenBank. Th e full-length 
cDNAs were cloned into pMD18-T (Takara, Japan) and verifi ed 
by sequencing. Th e amino acid sequences were analyzed using the 
PROSITE database.

SRS/CytoTrap two-hybrid assay. Th e full-length cDNAs of 
PaEIF3G, PaFBPA1, PaFK506BP, PaGTPBP, PaMSRB1, and 
PaMTL, were cloned into pMyr via the EcoRI/SalI sites to form 
pMyr-PaEIF3G, pMyr-PaFBPA1, pMyr -PaFK506BP, pMyr-
PaGTPBP, pMyr-PaMTL, and pMyr-PaMSRB1, respectively. 
Saccharomyces cerevisiae strain cdc25H was co-transformed 
with the pMyr-PaEIF3G/pSos-NP, pMyr-PaFBPA1/pSos-NP, 
pMyr-PaFK506BP/pSos-NP, pMyr-PaGTPBP/pSos-NP, pMyr-
PaMSRB1/pSos-NP, and pMyr-PaMTL/pSos-NP, as described 
above, according to the manufacturer΄s instructions (Stratagene, 
USA).
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Results

Auto-activation of bait plasmid

Cdc25H yeast co-transformed with pSos-NP and pMyr 
were able to grow on SD/galactose (–UL) medium (at 25°C) 
and SD/glucose (–UL) medium (at 25°C) but not in SD/
galactose (–UL) medium (at 37°C) or SD/glucose (–UL) 
medium (at 37°C) (Fig. 1). Th erefore, it could be used in the 
screening of NIa-Pro-binding protein in the yeast SRS.

Isolation of PRSV NIa-Pro interacting host proteins

To identify host proteins interacting with PRSV NIa-
Pro, a cDNA library was constructed from C. papaya L. 
seedlings. Using yeast SRS, 1.85×106 independent yeast 
transformants were screened using PRSV NIa-Pro as bait. 
In total, 35 positive candidate clones were identifi ed aft er 
two rounds of testing for galactose-dependent growth at 
37°C. Th en, the cDNA plasmids of these 35 colonies were 
rescued and the specificity of the interaction was verified 
by retransformation into yeast strain cdc25H cells in com-
bination with the bait pSos-NP or control plasmids. Based 
on sequence alignment with the relevant homologous se-
quence from C. papaya, Arabidopsis thaliana, Gossypium 
arboreum, Ricinus communis, Populus trichocarpa, Platanus 
acerifolia, Oryza sativa, and Populus tremula, the cDNA 
inserts of the 35 candidate plasmids encoded proteins 
which were identifi ed as six diff erent host proteins: EIF3G, 
FBPA1, FK506BP, GTPBP, MSRB1, and MTL. According to 
sequence alignments with whole-genome shotgun reads of 
C. papaya L. in GenBank, the full-length cDNAs of the six 
genes were cloned by RT-PCR and designated as PaEIF3G 
(GenBank Acc. No. JN008890), PaFBPA1 (GenBank Acc. 

No. JN008888), PaFK506BP (GenBank Acc. No. JN008892), 
PaGTPBP (GenBank Acc. No. JN008891), PaMSRB1 
(GenBank Acc. No. JF431992) and PaMTL (GenBank Acc. 
No. JN008889).

Interaction of NIa-Pro with full-length papaya proteins in 
yeast

Th e full-length cDNAs of six genes were inserted into the 
pMyr vector. Th e resulting six plasmids, pMyr-PaEIF3G, 
pMyr-PaFBPA1, pMyr-PaFK506BP, pMyr-PaGTPBP, 
pMyr-PaMSRB1 and pMyr-PaMTL, were co-transformed 
with pSos-NP into cdc25H cells, whereas pMyr-PaEIF3G/
pSos, pMyr-PaFBPA1/ pSos, pMyr-PaFK506BP/pSos ,pMyr-
PaGTPBP/pSos, pMyr-PaMSRB1/pSos and pMyr-PaMTL/
pSos were co-transformed into cdc25H as negative controls. 
Only transformants with the pMyr-PaEIF3G/pSos-NP, 
pMyr-PaFBPA1/pSos-NP, pMyr-PaFK506BP/pSos-NP, 
pMyr-PaGTPBP/pSos-NP, pMyr-PaMSRB1/pSos-NP and 
pMyr-PaMTL/pSos-NP co-transformed yeasts and the 
positive controls could grow on SD/galactose (–UL) me-
dium (at 37°C) (Fig. 1). Th e result of these 15 independent 
complementation experiments indicates that the specific 
interactions between these six host proteins and PRSV NIa-
Pro can occur in the yeast cells, respectively.

Discussion

In this study, the bait vector pSos-NP and papaya cDNA 
library were constructed using the SRS/CytoTrap two-hybrid 
system to screen for host proteins that interact with the 
PRSV NIa-Pro. In total, we isolated six functional proteins 
from papaya (PaEIF3G, PaFBPA1, PaFK506BP, PaGTPBP, 

Table 1. Primers used in full-length cDNA clone and plasmid construction

Primers Primer sequences* Genes Constructs
NP-F 5ʹ-TAGGATCCCCGGAAAGAGTCTTTGCCAAGGCATGAGGAATT-3ʹ
NP-R 5ʹ-GCGGAGCTCTTTACTGCTCAAAAACATTTAATTGATTG-3ʹ NIa-Pro pSos-NP
PaEIF3G-F 5ʹ-GCCGGAATTCGCGATTGACAAAACTGA-3ʹ
PaEIF3G-R 5ʹ-GGCGGTCGACCTAGTTTGCTCTAGGAGTC-3ʹ PaEIF3G pMyr-PaEIF3G
PaFBPA1-F 5ʹ-GCCGGAATTCGCCTCTGCTTCTTTCCTCAAGTCTT-3ʹ
PaFBPA1-R 5ʹ-GGCGGTCGACTTAGTAAACGTAGCCCTTAACGAAC-3ʹ PaFBPA1 pMyr-PaFBP1
PaFK506BP-F 5ʹ-TAGAGAATTCGCGGTCTCTGCTTTCG-3ʹ
PaFK506BP-R 5ʹ-GAGGTCGACCTTTGCATTCCCAGAGT-3ʹ PaFK506BP pMyr-PaFK50BP
PaGTPBP-F 5ʹ-TAGAGAATTCGTGAAGAAGAAAGAAAAGAC-3ʹ
PaGTPBP-R 5ʹ-GAGGTCGACTCAGTTGATAGGTACCTGCT-3ʹ PaGTPBP pMyr-PaGTPBP
PaMSRB1-F 5ʹ-TAGAGAATTCGCTCCTCTGCTTCTTCTC -3ʹ
PaMSRB1-R 5ʹ-GAGGTCGACTGATTTCGGTTTCAGTCTC-3ʹ PaMSRB1 pMyr-PaMSRB1
PaMTL-F 5ʹ-TAGAGAATTCTCGGACACCTGCGGCAA-3ʹ
PaMTL-R 5ʹ-GAGGTCGACTCAGTGACCGCAGGTGC-3ʹ PaMTL pMyr-PaMTL

*Restriction sites are underlined.
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PaMSRB1, and PaMTL) interacting with PRSV NIa-Pro 
protein, respectively.

One of the first steps in translation of viral RNAs by 
the host machinery is the recruitment of mRNAs by the 
translation eukaryotic initiation factors (eIFs). Many stud-
ies showed that the interaction between eIF4E/4G and the 
potyviral genome-linked protein VPg is crucial for successful 
completion of the potyviral life cycle (Charron et al., 2008; 
Léonard et al., 2000; Michon et al., 2006; Khan et al., 2006, 
2009) and eIF4E and its isoform, eIF(iso)4E can mediate vi-
rus resistance in several plant-potyvirus interactions (Zhang 
et al., 2006). Recent study demonstrates that HC-Pro is also 
an interaction partner of eIF(iso)4E and eIF4E and contains 
a 4E Binding Motif (Ala-Poikela et al., 2011). In this work, 
we identifi ed a new eukaryotic translation initiation factor 
eIF3G from papaya interacting with PRSV NIa-Pro .Th is 
fi nding can help to understand a novel role of eIF in virus 
invasion and host defense.

Plants had evolved complicated mechanisms to solve 
problems with a variety of environmental stresses and stress-

related proteins play important roles in these mechanisms. 
Previous reports have showed that the metallothionein-like 
protein (MTL) (Choi et al., 1996; Hsieh et al., 1995; Buchanan-
Wollaston, 1994), methionine sulfoxide reductase B (MSRB) 
(Oh et al., 2010; Tarrago et al., 2009) and fk 506-binding pro-
tein (FK506BP) (Lima et al., 2006; Ingelsson et al., 2009) play 
important roles in various biotic and abiotic stress responses 
of plants, such as heavy metals, oxidative stress and pathogen 
attack. In this work, we confi rmed that FK506BP, MSRB1 and 
MTL from papaya can interact with PRSV NIa-Pro, respec-
tively, suggesting that these interactions may be involved in 
plant stress response pathways and could interfere with virus 
infection or host defense during host-virus interaction.

Fructose-1, 6-bisphosphate aldolase (FBPA) is a key 
enzyme in Calvin cycle (Marsh and Lebherz, 1992) and can 
regulate the rate of photosynthesis in higher-plant chloro-
plast (Iwaki et al., 1991). In this work, we identifi ed a FBPA 
from papaya (PaFBPA1) interacting with PRSV NIa-Pro 
and propose that this interaction may be involved in some 
chloroplast functions. It has been previously reported that 

Fig. 1

Detection of interaction between PRSV NIa-Pro and host proteins (PaEIF3G, PaFBPA1, PaFK506BP, PaGTPBP, PaMSRB1, and PaMTL) 
by the Sos recruitment assay

S. cerevisiae strain cdc25H was transformed with the indicated plasmid combinations. Th ree colonies from each transformant were picked up, resuspended 
and diluted to optical densities at 600 nm of 0.5 in sterile water. An aliquot of 2.5 ml of each dilution was patched in rows onto each of two synthetic 
glucose minimal medium without leucine and uracil [SD/glucose (–UL)] and two synthetic galactose minimal medium without leucine and uracil [SD/
galactose (–UL)] plates and one of each type of plate was incubated at the permissive or non-permissive temperature (25 or 37°C) for 6 days to compare 
the growth of yeast. pMyr-MAFB and pSos-MAFB were used as positive controls. pMyr-Lamin C and pSos-MAFB were used as negative controls.
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potyviral coat protein or HC-Pro could alter chloroplast 
numbers, morphology and inhibit their functions in infected 
plants by interacting with some host proteins associated with 
chloroplasts, such as the large subunit of Rubisco (Feki et 
al., 2005), 37-kDa chloroplast protein (McClintock et al., 
1998), the chloroplast division-related factor NtMinD (Jin 
et al., 2007) and precursor of ferredoxin-5 (Cheng et al., 
2008; Pompe-Novak et al., 2001). In addition, we demon-
strated that NIa-Pro interacts with the GTP-binding family 
protein of papaya, namely PaGTPBP with diverse functions 
including signal transduction, secretion and regulation of 
cytoskeleton (Ma, 1994; Tuteja, 2009). 

In summary, using SRS we isolated six papaya proteins, 
which interact with PRSV NIa-Pro specifi cally. Our results 
can help to gain insight into roles of this multifunctional 
protein NIa-Pro in the cycle of PRSV infection. However, the 
functions of all these interactors remain to be determined 
through the transgenic papaya plants in which the genes are 
over-expressed or silenced.
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