Selection pressure on the hemagglutinin gene of Influenza A (H1N1) virus: adaptation to human and swine hosts in Asia

Z. XU, R. ZHOU, M. JIN, H. CHEN*

Division of Animal Infectious Disease, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China

Received August 17, 2009; accepted March 30, 2010

Summary. – Influenza A (H1N1) virus is an important pathogen that can be transmitted in the enzootic cycle involved in influenza epidemics. In this study, we analyzed natural selection on the 260 sequences of subtype 1 hemagglutinin (HA1) gene of H1N1 viruses isolated from humans and swine in Asia. Nonsynonymous and synonymous substitution rates (d_{N}, d_{S}) were determined for each amino acid site in the HA1 coding region. Four and two positively selected sites were identified in human and swine viruses, respectively. These sites might be involved in the change of antigenic epitopes to evade the host immune system. The results indicate that more diversifying and less purifying selection controls HA1 of human viruses compared with the swine viruses. Furthermore, thirteen sites evolving differently in human and swine viruses were identified in the HA1. These sites may play a role in the cross-species transmission. The analysis of adaptive evolution of the HA1 can provide valuable information for accelerating vaccine and drug development for prevention and treatment of influenza A (H1N1) in Asia.

Keywords: Influenza A virus; H1N1; hemagglutinin; positive selection; antigenic epitope

Introduction

Influenza viruses, the etiological agents of influenza (the family *Orthomyxoviridae*), are classified into three types A, B, C, and the type A viruses belong to the most virulent human pathogens (Webster *et al.*, 1982; Suzuki, 2006). Influenza A virus contains RNA genome in 8 segments encoding hemagglutinin (HA), neuraminidase (NA), nucleoprotein (NP), matrix proteins (M1 and M2), polymerase proteins (PB2, PB1, and PA) and nonstructural proteins (NS1 and NS2) (Webster *et al.*, 1992).

The swine influenza pandemic that occurred in April 2009, was a global outbreak caused by a new variant strain

of influenza A virus subtype H1N1. Historically, the H1N1 virus caused disastrous Spanish influenza in 1918–1919 leading to approximately 50 million deaths (Taubenberger and Morens, 2006).

The HA protein of influenza A viruses is a surface glycoprotein. It has also become an important antigen as the major target of humoral immunity against Influenza A virus (Caton *et al.*, 1982). The mature HA can be cleaved into two subunits HA1 and HA2 by the host trypsin-like proteases (Webster *et al.*, 1992). HA of human influenza viruses that is under the host immune pressure is evolving much more rapidly than the internal protein genes PB1, PB2, PA, NP and M1 (Webster *et al.*, 1992; Suzuki, 2008). The evidence of positive selection has been reported for the HA1 genes of different subtypes such as H3N2 and H5N1 (Bush *et al.*, 1999; Campitelli *et al.*, 2006; Kumar *et al.*, 2006; Suzuki, 2008).

Estimation of the rates of nonsynonymous (d_N) to synonymous substitutions (d_S) per site has become a standard tool of the selection pressure: $d_N/d_S>1$ and $d_N/d_S<1$ indicate positive and negative selection, respectively (Hughes and Nei, 1988; Nielsen and Yang, 1998). These analyses have been widely

^cCorresponding author. E-mail: chenhch@mail.hzau.edu.cn; fax: +8627-87281795.

Abbreviations: $d_{\rm N}$ = nonsynonymous substitutions per site; $d_{\rm S}$ = synonymous substitutions per site; FEL = fixed effects likelihood; HA1, 2 = hemagglutinin subunits 1, 2; ML = maximum likelihood; SLAC = single likelihood ancestor counting

No.	Acc. No	Virus	No.	Acc. No	Virus
1	U46783	A/swine/Beijing/47/1991	2	EU004452	A/swine/Henan/01/2006
3	EU502884	A/swine/Shanghai/1/2005	4	EU502885	A/swine/Shanghai/2/2005
5	EU004444	A/swine/Tianiin/01/2004	6	FI415610	A/swine/Zheijang/1/2007
7	X57491	A/swine/Hong Kong/1/1974	8	U44482	A/swine/Hong Kong/168/1993
9	U46020	A/swine/Hong Kong/172/1993	10	U45451	A/swine/Hong Kong/176/1993
11	U45452	A/swine/Hong Kong/273/1994	12	GO229285	A/swine/Hong Kong/8512/2001
13	GO229357	A/swine/Hong Kong/9656/2001	14	GQ229205 GQ229325	A/swine/Hong Kong/NS1179/2007
15	GQ229397	A/swine/Hong Kong/NS1659/2001	16	GQ229323 GQ229301	A/swine/Hong Kong/NS29/2009
17	GQ229293 GQ229261	A/swine/Hong Kong/NS837/2001	18	D28518	A/sw/Obihiro/5/1992
10	X57494	A/swine/Fhime/1/1980	20	AB434392	A/swine/Hokkaido/2/1981
21	Δ B/13/38/	A/swine/Euline/1/1900	20	AB434400	Δ /swine/Nijgata/1/1977
23	FU798778	A/swine/Korea/CAN01/2004	24	FU798779	A/swine/Kores/CAS08/2005
25	A B434328	A/swine/Chachoengsao/NIAH587/2005	26	EU296605	A/swine/Chonburi/06CB2/2006
27	AB434320	A/swine/Chapburi/NIAH589/2005	28	EU296599	A/swine/Chonburi/NIAH589/2005
29	A B434304	A/swine/Chonburi/NIAH9469/2004	30	AB434312	A/swine/Chonburi/NIAH977/2004
31	AB434296	A/swine/Ratchaburi/NIAH550/2003	32	FI688266	A/swine/Thailand/HE6/2005
33	FI375207	A/Cambodia/365/2007	34	FI375205	A/Cambodia/0371/2007
35	FI375206	A/Cambodia/0374/2007	36	FI375205	A/Cambodia/502/2007
37	EI743471	A/Cambodia/03/4/2007	38	CO200287	A/Shandong/1/2009
30	GO268003	A/GuangzhouSB/01/2009	<i>4</i> 0	GQ200207	A/Fujian/1/2009
41	GQ208005	A/Shanghai/1/2009	40	GQ225505	A/Tujian/1/2009
41	GQ225557	A/Sichuan/1/2009	42	GQ293077	A/Zhejiang/DTID ZILI01/2009
45	GQ100223	A/Sichuan/1/2009	44	GQ339738	A/Zilejiang/D11D-Zj001/2009
43	GQ280204	A/Ivanjing/1/2009	40	GQ232093	A/Deljing/4/2009
47	GQ221094	A/Guangzhou/482/2006	40 50	C1020373	A/Tientsiii//8/19//
49 51	EU302901	A/Guangzhou/465/2006	50	EU302902	A/Guangzhou/555/2006
51	EU302903	A/Guangzhou/657/2006	52	EU302903	A/Guangzhou/1694/2006
55	EU302904	A/Guangzhou/1561/2006	54 56	AV280030	A/Gualigzilou/1084/2000
57	L 10017	A/Gualigzilou/1501/2000	58	L 10024	A/Sichuan/4/1988
50	A 1457900	A/Qiligua0/26/1991	50 60	CV033614	A/Sicilian/4/1988
59 61	AJ437900	A/Deljilig/202/1995	60	CV016228	A/Dening/202/1995
62	CV012952	A/Denjing/202/1995	64	CV012012	A/Nanchang/12/1006
65 65	C1013855	A/Nanchang/20/1990	04 66	C1013813	A/Nanchang/15/1996
65	C1013821	A/Nanchang/15/1996 A/Nanchang/16/1996	60	C101/011	A/Nanchang/14/1996
60	C1013629	A/Hong Kong/01/2000	70	GQ551514 CV000202	A/Hong Kong/117/1077
71	GQ108000	A/Hong Kong/01/2009	70	C1009292	A/Hong Kong/CUHV 12002/2002
/1	AE296791	A/Hong Kong/2052/2000	72	EU310329	A/HongKong/CURK-15005/2002
75	AF300/01	A/Hong Kong/747/2001	74 76	AJ457005	A/Hong Kong/464//1998
75	AJ457072	A/Hong Kong/74//2001	70	AJ457095	A/Hong Kong/470/1997
70	AJ45/901	A/Hong Kong/39/1994	/8	AJ45/899	A/Hong Kong/121/1009
/9	AF380//0 CV020452	A/Hong Kong/1035/1998	80	AF300//3	A/HOIIg KOIIg/1151/1998
01	C1020455	A/India/0203/1980	82	C1031295	A/Iraq/AF1193/200/
83 05	C1051288	A/Iraq/AF1188/2007	84 07	C1051291	A/Iraq/AF1191/2007
85	CY031296	A/Iraq/AF1196/2007	80	C1031303	A/Iraq/AF1203/200/
0/	C1051297	A/Iraq/AF119//200/	00	C1051269	A/Iraq/AF1189/200/
01	C1041908	A/Israel/2/0/2009	90	GQ28/019	A/FUKU0Ka-C/1/2009
91	GQ28/625	A/Tokushima/1/2009	92	GQ2012//	A/Siliga/1/2009
95	GQ354555	A/Otsunomiya/1/2009	94	GQ305440	A/Sapporo/1/2009
95	GQ201275	A/SaKal/2/2009	90	C1045078	A/Japan/10/0/2009
97	AB045499	A/ Yokonama/24/2000	98	CY034527	A/Japan/AF1884/2008
99	CY031469	A/Japan/AF12/4/2008	100	CY031470	A/Japan/AF12/5/2008
101	CY03146/	A/Japan/AF12/2/2008	102	CY031442	A/Japan/AF12/8/2007
103	CY031468	A/Japan/AF12/3/2008	104	CY031466	A/Japan/AF12/1/2008
105	CY034522	A/Japan/AF1963/2007	106	CY0314/1	A/Japan/AF12/6/2008
10/	AB043493	A/Aichi/25/1996	108	AB043492	A/Kamata/69/1996
109	AB043491	A/Kamata/381/1995	110	L19014	A/Fukushima/2/1988
111	AB043488	A/Nagano/1669/1989	112	D31949	A/Yamagata/32/1989
113	D135/4	A/Suita/1/1989/	114	D135/3	A/Suita/1/1989
115	AB043490	A/A1CN1/24/1992	116	AB043489	A/Nagano/92/1991
11/	D00841	A/ Tamagata/120/1986	118	ABU4348/	A/Namata/85/198/
119	AD434105	A/WOFIOKA///2005	120	AB434100	A/IVIOFIOKA/3/2003 A/Mariaka/17/2002
121	AB434102	A/WOTIOKA/21/2005	122	AB434099	A/IVIOTIOKA/1//2002
123	AB434103	A/MOTIOKA/2//2002	124	AB043495	A/ 10K0nama/50/1998
125	DQ39/950	A/HIROShima/3//2001	126	AB043496	A/A1CN1/94/1999
127	ABU43498	A/ 10K0hama/12/2000	128	AY029292	A/IVIISaWa/1226/00

Table 1. The list of 260 sequences of HA1 gene of influenza A (H1N1) viruses used in this study

No.	Acc. No	Virus	No.	Acc. No	Virus
129	AB043497	A/Aichi/102/1999	130	AB043500	A/Ibaraki/90/1998
131	AB043494	A/Kamata/159/1997	132	AB043481	A/Tokyo/1/51
133	AB043480	A/TF/15/1951	134	AB043486	A/Saga/2/1957
135	AB043482	A/Kojiya/1/1952	136	AB043484	A/Yamagishi/55
137	AB043485	A/Meguro/1/1956	138	S62154	A/Alma Ata/1417/84
139	CY028091	A/Tennessee/UR06-0523/2007	140	CY031350	A/Macau/189/2007
141	FJ899924	A/Macau/229/2008	142	EF566337	A/Macau/13076/2006
143	EF566338	A/Macau/14585/2006	144	EF566330	A/Macau/10258/2006
145	EF566237	A/Macau/22//2005	146	EF566236	A/Macau/122/2005
14/	CY031354	A/Malaysia/330/2007	148	CY031368	A/Malaysia/862/2007
149	EF566325	A/Malaysia/3//2006	150	EF566324	A/Malaysia/36/2006
151	EF566326	A/Malaysia/38/2006	152	EF56632/	A/Malaysia/56/2006
155	EF500358	A/Malaysia/88/2004	154	EF500120	A/Malaysia/1513/2004
155	EF5003/3	A/Malaysia/1513/2004	150	EF506042	A/Malaysia/643/2003
15/	CV021052	A/Malaysia/1003/2003	158	C1009540 754297	A/Manaysia/1954
161	754296	A/Mangalia/221/85	160	CO242760	A/INOligolia/155/88
161	CO242740	A/Woligona/251/85	164	GQ243700	A/Philippines/2000/2009
165	GQ243749	A/Philippines/2009/2009	164	GQ243733 CV020867	A/Philippines/2001/2009
165	FJ743409	A/Philippines/1139/2008	160	C1030807	A/Philippines/903/2000
167	EF500540	A/Philippines/006/2006	100	C1030803	A/Philippines/12/9/2006
109	CV031338	A/Philippines/900/2000	170	EF500547 EE566125	A/Philippines/024/2000
171	EE566124	A/Philippines/087/2004	174	CV034523	A/Optor/AE1966/2007
175	CV031305	A/Philippines/98/72004 A/Ostar/AE1205/2007	174	C1034323	A/Singapore/TLL01/2009
175	CV031360	A/Qatal/AF1203/2007	170	GQ392017 EE566374	A/Singapore/14/2004
170	CV030213	A/Singapore/69/2006	180	EF566354	A/Singapore/41/2004
1/9	CV030215	A/Singapore/36/2006	182	EF566310	A/Singapore/107/2005
183	EE566375	A/Singapore/23/2000	184	L1900919	A/Singapore/10/12005
185	L1500575	A/Singapore/10/1990	186	L20111 L20106	A/Singapore/03/1990
187	L20110 L19026	A/Singapore/6/1990	188	L20100 L20108	A/Singapore/06/1990
189	L19020 L20107	A/Singapore/03/1990	190	L20106	A/Singapore/12/1990
191	L20107	A/Singapore/12/1990	192	L20110 L20112	A/Singapore/11/1990
193	L20113	A/Singapore/11/1990	194	CY020477	A/Singapore/6/1986
195	D00406	A/Singapore/6/1986	196	AI457896	A/Singapore/15/1996
197	EU304355	A/Busan/03/2007	198	CY031352	A/Jeiu/2279/2007
199	EU304354	A/Busan/02/2007	200	CY031496	A/Korea/AF1307/2008
201	CY031493	A/Korea/AF1304/2008	202	CY034541	A/Korea/AF1899/2008
203	CY034540	A/Korea/AF1898/2008	204	CY031451	A/Korea/AF1312/2007
205	L33743	A/Seoul/20/1991	206	AY299494	A/Pusan/24/2002
207	AY299501	A/Seoul/15/2002	208	AY299506	A/Chungbuk/50/2002
209	AY297154	A/Chonnam/07/2002	210	AY299499	A/Gwangju/90/2002
211	AY299508	A/Gwangju/57/2002	212	AY299500	A/Seoul/13/2002
213	AY297157	A/Pusan/23/2002	214	AY299496	A/Pusan/45/2002
215	AY299507	A/Gwangju/55/2002	216	AY299509	A/Gwangju/58/2002
217	AY299495	A/Seoul/33/2002	218	CY031356	A/Sri Lanka/22/2007
219	DQ415318	A/TW/4845/1999	220	CY040058	A/Taiwan/71720/2007
221	CY040090	A/Taiwan/70013/2008	222	CY040106	A/Taiwan/70132/2008
223	EF566122	A/Taiwan/1559/2004	224	DQ415316	A/TW/130/1996
225	AF026160	A/Taiwan/118/1996-3	226	AF026159	A/Taiwan/118/1996-2
227	AF026158	A/Taiwan/118/1996-1	228	AF026156	A/Taiwan/117/1996-2
229	AF026155	A/Taiwan/117/1996-1	230	AF026153	A/Taiwan/112/1996-1
231	AF055426	A/Taiwan/2243+C44/1992	232	D00407	A/Taiwan/1/1986
233	X17224	A/Taiwan/1/1986	234	DQ508873	A/Taiwan/01/1986
235	EF566234	A/Taiwan/50/2005	236	DQ249260	A/Taiwan/2985/2002
237	CY040146	A/Taiwan/52/2002	238	CY040154	A/Taiwan/123/2002
239	CY040074	A/Taiwan/567/2002	240	CY040138	A/1aiwan/5072/1999
241	DQ415317	A/TW/3355/1997	242	AB043483	A/laiwan/13/1954
243	EF101749	A/1hailand/271/2005	244	GQ150342	A/Nonthaburi/102/2009
245	CY031380	A/1hailand/486/2007	246	CY030872	A/Thailand/39/2008
247	EU021256	A/Thailand/CU57/2006	248	CY031382	A/Thailand/545/2007
249	EU021254	A/Inailand/CU51/2006	250	CY031344	A/Inailand/798/2006
251	EU021252	A/Inailand/CU88/2006	252	EF566351	A/Inailand/380/2006
253	EU021250	A/Inailand/CU67/2006	254	EU021246	A/Inailand/CU41/2006
255	EU021258	A/Inailand/ $UU44/2006$	256	EU021262	A/Inailand/UU/5/2006 A/Theiles $\frac{1}{20}/2005$
257	EUU21264	A/Inailand/CU32/2006	258	EF566235	A/Inaliand/28/2005
239	EF3003/2	A/ DaligKOK/ 1406/ 2004	260	EF308930	A/ manana/Siriraj-0//2000

used for the study of adaptive evolution of protein-coding genes of different viruses. In this way, positive selection has been detected in several systems, including Human immunodeficiency virus 1 genes, Hepatitis C virus subtype 1b polyprotein and St. Louis encephalitis virus envelope protein (Nielsen and Yang, 1998; Suzuki and Gojobori, 2001; Baillie *et al.*, 2008).

In this study, we analyzed natural selection on 260 coding sequences of HA1 gene of influenza A (H1N1) viruses isolated from humans and swine in Asia. By estimating the d_N/d_s ratio for each amino acid site we could identify the positively or negatively selected sites in the HA1 and hence the differences in the adaptation of the virus to human and swine host.

Materials and Methods

Sequence data sets. The sequence data of the HA1 gene of influenza A (H1N1) viruses isolated in Asia (updated in July, 2009) were retrieved from the Influenza Virus Resource database (http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html). Two data sets for human and swine viruses were compiled. The identical sequences were excluded from each data set. After removing the sequences derived from laboratory strains, 228 and 32 sequences originated from human and swine viruses, respectively, were used for the following analysis. Acc. Nos. of these sequences are listed in Table 1.

Detection of homologous recombination and positively/negatively selected sites. Multiple sequence alignments were performed using the program MUSCLE 3.6 and then manually examined (Edgar, 2004). Each sequence alignment consisted of 972 nt encoding the HA1 region (324 aa). Briefly, a phylogenetic tree for each data set was built using a maximum likelihood (ML) method implemented in PhyML 3.0 (Guindon and Gascuel, 2003). A substitution model HKY85 with the estimated ratio of transition/transversion rate (κ), gamma distributed rate heterogeneity of 4 categories (Γ 4) and a proportion of invariable sites was used in the tree reconstruction. The generated ML trees were used for estimating the site-by-site variation rates. Since recombination can lead to spurious results in the estimating of selection pressure, first we tested the recombination in each data set by using a genetic algorithm for recombination detection (GARD) (Kosakovsky et al., 2006a). To deduce amino acid sites under positive/negative selection on HA1, we used two likelihood procedures available in HyPhy and DataMonkey: (i) single likelihood ancestor counting (SLAC) and (ii) the more sensitive fixed effects likelihood (FEL) (Kosakovsky et al., 2005a, b). To take account of nucleotide biases that probably affect the accuracy of evaluating nonsynonymous and synonymous substitution rates, a best fitting model of the nucleotide substitution was estimated for each data set according to the Akaike's Information Criterion. The ratio $d_{\rm N}/d_{\rm s}$ was calculated by a codon model obtained by crossing MG94 and the best nucleotide model (Muse and Gaut, 1994). Furthermore, a method for identifying sites that were selected differentially in two populations was implemented in the HyPhy package (Kosakovsky et al., 2006b). The significance threshold for likelihood ratio tests in this study was set at 0.05.

Results and Discussion

The detection of recombination was performed for each data set of influenza A (H1N1) viruses, which were found to be free of homologous recombination events. After detection of recombination, the global ratios of d_N/d_S were estimated to be 0.172 and 0.324 in the HA1 coding region for swine and human viruses, respectively. The result indicated that HA1 genes may experience stronger positive selection in the process of adaptation to the human than to the swine. Particularly, the ratio d_N/d_S for HA1 of human H3N2 viruses was estimated to be approximately 0.3 (Suzuki, 2006). It indicated that the HA1 genes from H1N1 and H3N2 viruses are subject to the similar selection pressure in human host environment. Together with other authors (Raymond *et al.*, 1986; Sugita *et al.*, 1991), we can suppose that the HA1 region from different subtypes of Influenza A virus evolves more rapidly in the humans than in swine.

The results of positively selected sites in the HA1 region of influenza A (H1N1) viruses were summarized in Table 2 and the selection profiles inferred by FEL were illustrated in Fig. 1. For the viruses isolated from swine, d_s exceeded d_N in the majority of sites (263 sites; 81.2%), and the strong evidence for negative selection was detected in approximately one-third (127 sites; 39.2%) of sites. On the other hand, $d_{\rm N}$ exceeded $d_{\rm s}$ in only 35 sites (10.8%), and two sites 113 and 203 were found to be under significant positive selection (Fig. 1). By comparison, 238 sites (73.5%) where d_s exceeded d_N were identified in the HA1 region of human influenza viruses, among which 113 sites (34.9%) were negatively selected. Moreover, there were totally 57 sites (17.6%), where $d_{\rm N}$ exceeded $d_{\rm S}$ for human influenza viruses and four of them were found to be under positive selection (Table 2). The selection results of site-by-site together with the estimation of global ratios $d_{\rm N}/d_{\rm s}$ suggested less purifying and more diversifying selection acting on HA1 of human viruses compared with swine viruses.

The positively selected sites are useful for the identification of immunodominant epitopes. The mutations at these sites may provide selective advantage to the mutants by allowing them to escape from the host immune system (Suzuki and Gojobori, 2001; Suzuki, 2006). Although the analysis of positive selection on the HA1 genes have been performed for human or swine influenza A (H1N1) viruses, no positively selected site was found in the HA1 region of swine H1N1 viruses, what is mainly caused by the limited sequence data (Sugita *et*

 Table 2. Positively selected amino acid sites in the HA1 of influenza

 A (H1N1) viruses isolated from humans and swine in Asia

17:	Number	Sites		
virus	of sequences	SLAC	FEL	
Human	228	239, 278	11, 204, 239, 278	
Swine	32	113, 203	113, 203	

Selection profiles of the coding region of HA1 gene of influenza A (H1N1) viruses isolated from humans and swine in Asia Vertical bars above and below horizontal line represent $d_N/d_S > 1$ and $d_N/d_S < 1$, respectively. The dashed lines represent the significant threshold.

al., 1991; Ina and Gojobori, 1994). In our study, the adaptive evolution for HA1 of human and swine H1N1 viruses isolated in Asia was re-analyzed using a large data set presently available. The positively selected sites in the HA1 region of H1N1 viruses were detected in human as well as in swine viruses. Among these sites found under positive selection pressure, the site 239 is involved in the composition of Ca antigenic region (Caton et al., 1982). according to the structure properties of HA protein, two sites 203 and 204 within the helix region are important for the interactions with receptor (Gamblin et al., 2004). Except for the site 11 in the signal peptide region, the function of other positively selected sites 113 and 278 needs to be further investigated. We deduced that the frequent variations of these sites in the HA1 regions were probably responsible for the modification of antigenic epitopes and generation of the escape mutants.

To further explore the adaptive evolutionary differences between human and swine H1N1 viruses, we compared the profiles of divergent selection acting on the HA1 region. Thirteen out of 324 sites (4.0%) in HA1 were found to be under differential selection at sites 24, 73, 99, 113, 121, 142, 157, 180, 198, 204, 219, 222, and 239 (p < 0.05) (Table 3). In order to adapt to the human host environment, the majority of these sites in human H1N1 viruses were subjected to the strong positive selection pressure. Among the sites in HA1 regions that were selected differentially, there were one site (204) involved in the receptor binding and four sites (142, 157, 180 and 239) involved in the immunodominant Sa and Ca antigenic sites (Caton *et al.*, 1982; Gamblin *et al.*, 2004).

 Table 3. Amino acid sites in the HA1 evolving differently in human and swine influenza A (H1N1) viruses in Asia

C:t - 1	Human		Swine		
Site	d _s	d _N	ds	d _N	
24	1.065	0.405	12.782	0	
73	3.622	0.276	0	0.785	
99	0	1.612	8.589	0	
113	3.735	2.502	0.848	5.663	
121	0	0.956	7.623	0.621	
142	3.510	1.906	10.497	0.379	
157	0.605	1.242	2.490	0	
180	3.213	3.241	3.343	0	
198	1.022	0.646	5.141	0	
204	3.608	12.278	4.657	0.794	
219	0.548	1.686	2.414	0.379	
222	0	1.702	7.041	1.366	
239	0	6.66	2.292	2.225	

^aAmino acid site numbering is based on A/Shandong/1/2009 virus.

The remaining sites might be associated with the novel hostspecific antigenic epitopes and require more experimental work to understand their function in virus infection. These sites under differential selection in the two host populations may play a potential role in the interspecies transmission of influenza A (H1N1) viruses.

In summary, four and two positively selected sites were identified in the HA1 region of human and swine influenza A (H1N1) viruses isolated in Asia, respectively. These positively selected sites may involve the transition of antigenic epitopes and in this way they facilitate influenza viruses to escape the host immune system. The estimated rates of nonsynonymous and synonymous substitutions showed more diversifying selection and less purifying selection acting on HA1 of human viruses compared with swine viruses. Furthermore, we identified 13 sites in the HA1 region that were selected differentially in human or swine, demonstrating the specific adaptation of H1N1 viruses to the particular host. These results provide valuable information for the development of vaccines and antiviral drugs for future prevention and treatment of the influenza A (H1N1) infections in Asia.

Acknowledgements. This work was supported by the grant No. 30530590 from National Natural Science Foundation of China and No. 2006BAD06A01 from National Scientific & Technical Supporting Program of China.

References

- Baillie GJ, Kolokotronis SO, Waltari E, Maffei JG, Kramer LD, Perkins SL (2008): Phylogenetic and evolutionary analyses of St. Louis encephalitis virus genomes. Mol. Phylogenet. Evol. 47, 717–728. doi:10.1016/j.ympev.2008.02.015
- Bush RM, Fitch WM, Bender CA, Cox NJ (1999): Positive selection on the H3 hemagglutinin gene of human influenza virus A. Mol. Biol. Evol. 16, 1457–1465.
- Campitelli L, Ciccozzi M, Salemi M, Taglia F, Boros S, Donatelli I, Rezza G (2006): H5N1 influenza virus evolution: a comparison of different epidemics in birds and humans (1997–2004). J. Gen. Virol. 87, 955–960. <u>doi:10.1099/vir.0.81397-0</u>
- Caton AJ, Brownlee GG, Yewdell JW, Gerhard W (1982): The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell 31, 417–427. <u>doi:10.1016/0092-8674(82)90135-0</u>
- Edgar RC (2004): MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797. <u>doi:10.1093/nar/gkh340</u>
- Gamblin SJ, Haire LF, Russell RJ, Stevens DJ, Xiao B, Ha Y, Vasisht N, Steinhauer DA, Daniels RS, Elliot A, Wiley DC, Skehel JJ (2004): The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science 303, 1838–1842. doi:10.1126/science.1093155
- Guindon S, Gascuel O (2003): A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704. <u>doi:10.1080/10635150390235520</u>

- Hughes AL, Nei M (1988): Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335, 167–170. <u>doi:10.1038/335167a0</u>
- Ina Y, Gojobori T (1994): Statistical analysis of nucleotide sequences of the hemagglutinin gene of human influenza A viruses. Proc. Natl. Acad. Sci. USA 91, 8388–8392. <u>doi:10.1073/</u> <u>pnas.91.18.8388</u>
- Kosakovsky Pond SL, Frost SD (2005a): Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21, 2531–2533. <u>doi:10.1093/</u> <u>bioinformatics/bti320</u>
- Kosakovsky Pond SL, Frost SD, Muse SV (2005b): HyPhy: hypothesis testing using phylogenies. Bioinformatics 21, 676–679. doi:10.1093/bioinformatics/bti079
- Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD (2006a): GARD: a genetic algorithm for recombination detection. Bioinformatics 22, 3096–3098. <u>doi:10.1093/</u> <u>bioinformatics/btl474</u>
- Kosakovsky Pond SL, Frost SD, Grossman Z, Gravenor MB, Richman DD, Brown AJ (2006b): Adaptation to different human populations by HIV-1 revealed by codon-based analyses. PLoS Comput. Biol. 2, e62. <u>doi:10.1371/journal.pcbi.0020062</u>
- Kumar R, Halder P, Poddar R (2006): Adaptive molecular evolution of virulence genes of avian influenza - A virus subtype H5N1: An analysis of host radiation. Bioinformation 1, 321–326.
- Muse SV, Gaut BS (1994): A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Mol. Biol. Evol. 11, 715–724.
- Nielsen R, Yang Z (1998): Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148, 929–936.
- Raymond FL, Caton AJ, Cox NJ, Kendal AP, Brownlee GG (1986): The antigenicity and evolution of influenza H1 haemagglutinin, from 1950–1957 and 1977–1983: two pathways from one gene. Virology 148, 275–287. <u>doi:10.1016/0042-6822(86)90325-9</u>
- Sugita S, Yoshioka Y, Itamura S, Kanegae Y, Oguchi K, Gojobori T, Nerome K, Oya A (1991): Molecular evolution of hemagglutinin genes of H1N1 swine and human influenza A viruses. J. Mol. Evol. 32, 16–23. <u>doi:10.1007/BF02099924</u>
- Suzuki Y, Gojobori T (2001): Positively selected amino acid sites in the entire coding region of hepatitis C virus subtype 1b. Gene 276, 83–87. <u>doi:10.1016/S0378-1119(01)00640-0</u>
- Suzuki Y (2006): Natural selection on the influenza virus genome. Mol. Biol. Evol. 23, 1902–1911. <u>doi:10.1093/molbev/msl050</u>
- Suzuki Y (2008): Positive selection operates continuously on hemagglutinin during evolution of H3N2 human influenza A virus. Gene 427, 111-116. <u>doi:10.1016/</u> j.gene.2008.09.012
- Taubenberger JK, Morens DM (2006): 1918 Influenza: the mother of all pandemics. Emerg. Infect. Dis. 12, 15–22.
- Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992): Evolution and ecology of influenza A viruses. Microbiol. Rev. 56, 152–179.
- Webster RG, Laver WG, Air GM, Schild GC (1982): Molecular mechanisms of variation in influenza viruses. Nature 296, 115–121. doi:10.1038/296115a0