MOLECULAR CHARACTERIZATION OF A CARNATION ETCHED RING VIRUS ISOLATE FROM INDIA

G. RAIKHY, V. HALLAN, S. KULSHRESTHA, M. LAL SHARMA, R. RAM, A.A. ZAIDI*

Plant Virology Laboratory, Floriculture Division, Institute of Himalayan Bioresource Technology, CSIR, Palampur, Himachal Pradesh, 176 061, India

Received April 29, 2003; accepted May 21, 2003

Summary. – Incidence of the Carnation etched ring virus (CERV), the only DNA virus reported to date on carnation, was investigated by a bioassay using a partially purified virus as inoculum and then by a doubleantibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). Out of 61 carnation cultivars analyzed 41 (67%) were found positive. The virus positivity was verified by polymerase chain reaction (PCR) and nucleotide sequencing. The amplified 1349 bp fragment was by about 98% and 96% identical with respect to coat protein (CP) and enzymatic polyprotein genes, respectively, as compared to the sequences available in the database. In terms of amino acid sequence similarity, the homology values were 99% and 97%, respectively. Comparison with other caulimoviruses revealed that CERV is most closely related to the Cauliflower mosaic virus (CaMV). High genetic stability of CERV may be attributed to the fact that it has evolved from the same initial sequence in an original host. Because of global market of cut flowers and vegetative propagation it has been dispersed around the world.

Key words: carnation; Carnation etched ring virus; coat protein; enzymatic polyprotein; Indian isolate; nucleotide sequencing

Introduction

Carnation (*Dianthus caryophyllus*) is one of important cut flower crops worldwide. Although no official statistics is available, it is estimated that it is grown on total 6,000– 7,000 ha worldwide (Pallas *et al.*, 1999). Out of eleven viruses currently known to infect carnation in nature only six are economically important (Pallas *et al.*, 1999). Among these viruses only CERV (the species *Carnation etched ring virus*, the genus *Caulimovirus*, the family *Caulimoviridae*) virion has a circular double-stranded DNA genome of

IHBT communication No. 0231.

approximately 8 kbp that is encapsidated in a spherical naked nucleocapsid of about 50 nm in diameter. Lommel *et al.* (1983) and Rodoni *et al.* (1994) have surveyed the spread of viral diseases in commercial carnation cultivars and have found that although the CERV infection was less incident it was second only to the Carnation mottle virus (CarMV). Symptoms of CERV infection consist of necrotic flecks, rings and line patterns "etched" on leaves. CERV has been reported from various parts of the world (Lisa, 1995) including France (Devergne, 1984), Italy (Rana, 1984) and Finland (Bremer and Lahdenpera, 1981). On the other hand, from Asia, there are very few reports only (Smookler and Loebenstein, 1975; Ram *et al.*, 1998).

Although a complete nucleotide sequence of CERV has already been reported (Hull *et al.*, 1986), there is no such a report from Asia.

In this study, an attempt to characterize a first CERV isolate from India was made; namely (i) its detection and incidence in naturally and commercially grown carnation cultivars by a bioassay, DAS-ELISA and PCR, and (ii) its comparison with other CERV isolates from different parts

^{*}Corresponding author. E-mail: zaidi_aijaz@yahoo.com; fax: +911894-230433.

Abbreviations: CaMV = Cauliflower mosaic virus; CarMV = Carnation mottle virus; CERV = Carnation etched ring virus; CP = coat protein; DAS-ELISA = double-antibody sandwich enzyme-linked immunosorbent assay; PCR = polymerase chain reaction; FMV = Figwort mosaic virus; MiMV = Mirabilis mosaic virus; PCSV = Peanut chlorotic streak virus; SVBV = Strawberry vein banding virus

Cv. No.	Carnation cv.	ELISA	Cv. No.	Carnation cv.	ELISA
1	Acca Pola	++	32	Marathona	_
2	Aicardi	+	33	Mercia	_
3	America	++	34	Mona Lisa	_
4	Ariane	-	35	New Espana	+
5	Arthur Sim	+	36	Orange Triumph	+
6	Balade Pink	+++	37	Parado	++
7	Bright Levdevory	++	38	Pink Dona	_
8	Cabaret	++	39	Pintoo	+
9	Charmint	+++	40	Pirandello	++
10	Charmour	_	41	Pleasure	_
11	Cherrio	-	42	Purple Chopin	_
12	Cherry Solar	+++	43	Raggio de Sole	++
13	Dalphe White	-	44	Red Carso	+
14	Dark Tempo	++	45	Rubesco	++
15	Desio	+++	46	Safari	++
16	Dona brecas	-	47	Saleya (X1)	++
17	Dusty Pink	+++	48	Salmanca	_
18	Espana	_	49	Scania	++
19	Firato	+++	50	Shocking pink	+++
20	Flair	++	51	Sonsara	+++
21	Garbo	++	52	Sorriso	_
22	Impala	_	53	Sunrise	_
23	Indios	+	54	Super Green	+
24	Irma	+++	55	Super Star	+++
25	Jack	-	56	Talima	++
26	Jose	+	57	Tasman	-
27	LaSpama	++	58	Trendy	+++
28	Lavender Lace	++	59	White Candy	_
29	Leon	+++	60	White Wedding	-
30	Liberty	++	61	Yellow Candy	+++
31	Madame Collette	+++			

Table 1. Incidence of CERV disease on carnation cultivars on the basis of symptoms and ELISA

(-) = negative reaction, (+) = weakly positive reaction, (++) = moderately positive reaction, (+++) = strongly positive reaction.

of the world and with other caulimoviruses on the basis of nucleotide and amino acid sequences of selected genome regions. In this way the homology among CERV isolates from two different parts of the world, i.e. Europe and Asia, was determined. Partial nucleotide sequence of the Indian CERV isolate is presented for the first time.

Materials and Methods

Virus isolation. The Indian CERV isolate used in this study was obtained by inoculation of partially purified virus obtained from *Saponaria vaccaria*. Carnation cultivars found negative for CarMV but positive for CERV, were used for partial virus purification described earlier (Covey *et al.*, 1998).

Bioassays. Amaranthus caudatus, Antirrhinum majus, Beta vulgaris, Celosia argentia, Dianthus barbatus, D. caryophyllus, Nicotiana clevelandii, and S. vaccaria were inoculated mechanically in triplicate at four-six-leaf stage. Partially purified viral preparations were used as inoculum. Plants were maintained at 20– 25°C, observed for symptoms periodically and further analyzed by DAS ELISA for verification of bioassay results.

ELISA. Sixty-one carnation cultivars grown in Kangra Valley, Himachal Pradesh, India, were screened for the CERV presence by DAS-ELISA (Clark and Adams, 1977) using commercially available virus-specific antibodies (Agdia and Bio-Rad, USA). Five plants, selected randomly from each cv, were analyzed by ELISA. A_{405} was read in a microtitre plate reader (Multiskan EX, Labsystems, USA). The ELISA result was considered positive when the A_{405} of the sample was at least three times higher than the mean A_{405} of healthy controls in triplicate. The A_{405} comparable to the positive control, about half of the positive control and about threefold of the negative control, respectively, was regarded as strongly (+++), moderately (++) and weakly (+) positive (Table 1).

DNA isolation. Total nucleic acid was isolated from 2 g of a leaf tissue using a standard method (Sambrook *et al.*, 1989). The pellet was resuspended in 500 μ l of nuclease-free water and RNA was removed by LiCl precipitation. Total DNA was ethanol-precipitated, washed, dried and redissolved in 80 μ l of nuclease-free water.

PCR amplification. The primers used for amplification were those reported by Sanchez-Navarro (1999). The following antisense and sense primers were used: 5'-CATCCATTGCTTAgACTTTTC-3' and 5'-CTTTGTGACATTTGCTC-3', respectively. The reaction was carried out in a 50 µl volume containing 150 ng of each primer, 3 µl of 10 mmol/l dNTPs, 5 µl of 10 x PCR buffer (Genei, India), 1.5 U of Taq DNA polymerase (Genei, India) and 200 ng of DNA. The reaction consisted of 39 cycles of 92°C/1 min, 43°C/2 mins, and 72°C/2 mins and a final cycle of 72°C/10 mins carried out in a Mastercycler (Eppendorf, Germany). The PCR products (10 µl) were electrophoresed in 1% agarose gel in 1 x TAE buffer (0.04 mol/l Tris-acetate and 0.001 mol/l EDTA), stained with 0.5 µg/µl ethidium-bromide and observed under UV light.

cDNA cloning, nucleotide sequencing and analysis of the amplicon. The PCR amplified fragment was cloned using the pGEMT-Easy vector system (Promega). The recombinant plasmid DNA for sequencing was isolated by the boiling method (Holmes and Quingley, 1981) and purified by using the WIZARD DNA cleanup system (Promega). Both strands of the cloned DNA were sequenced by the dideoxy chain termination method (Sanger, 1977) using an automated sequencer (ABI PRISM 310, Applied Biosystems, USA) and the ABI PRISM[®] Big Dye[™] Terminator (version 3.0) Ready Reaction Cycle Sequencing Kit (Applied Biosystems, USA). The nucleotide sequences of a portion of genomes of the Indian CERV isolate, another CERV isolate and other caulimoviruses available at the EMBL nucleotide database were analyzed using the BLAST (NCBI) program (Altschul et al., 1997). The BLASTP program was used for searching the amino acid sequence database. The parities comparison was performed using the ALIGN-2 program (Tatusova and Maiden, 1999). Multiple alignments were generated by the MULTALIN program (Corpet, 1988). The nucleotide sequence of the Indian CERV isolate reported in this paper were deposited at the EMBL nucleotide database under the Acc. No. AJ549330.

Results

Bioassays

The partially purified viral concentrate compared to the crude sap enhanced the incidence of CERV infection and

thus was routinely used for inoculation. *S. vaccaria*, *D. barbatus* and *D. caryophyllus* proved to be suitable indicator plants under the conditions desribed. Necrotic ringspots or lines developed on *Saponaria vaccaria* while *D. barbatus* and *D. caryophyllus* showed typical "etched ring" symptoms.

DAS-ELISA

DAS-ELISA confirmed the widespread CERV presence in most of the carnation cultivars tested (Table 1). Even the cultivars not showing marked visible symptoms were DAS-ELISA-positive for CERV. Also the movement and extent of CERV infection during the bioassay and host range studies were monitored by DAS-ELISA. The latter proved to be a good diagnostic tool for CERV detection in plants used for maintenance of virus culture and also for cross-checking the presence of other viruses.

PCR amplification and sequence analysis

The DNA fragment of the expected size (1350 bp containing a portion of CP and enzymatic polyprotein of CERV genome, was amplified and sequenced. The fragment contained a 3'-terminal part of the coat protein (CP) gene (nt 1-708) and a 5'-part of the enzymatic polyprotein (nt 705–1349) gene. Nucleotide sequence analysis showed that the part of the CP gene was similar by 97.7% while the part of the enzymatic polyprotein gene was similar by 96% to the corresponding sequences in the database. When the corresponding deduced amino acid sequences were compared, the similarity rose to 98.7% and 97.2%, respectively (Figs. 1 and 2, Tables 2 and 3). When the isolate was compared with other caulimoviruses in the database, it showed a nucleotide similarity of 40-55% in the case of CP and 44-60% in the case of enzymatic polyprotein (Tables 2 and 3).

	DCSV	BDDV	SCBV	EMV	MIMV	CEPV	CaMV	CEPV2
	10.5 V	DKKV	SCDV	1.161 6	IVIIIVI V	CERV	Calvi v	CERV2
PCSV	Х	48.4	43.7	41.4	45.9	36.5	42.9	43.2
BRRV	49.9	Х	43.4	45.8	41.0	47.3	46.9	51.6
SCBV	45.4	44.4	Х	47.8	47.1	49.0	51.7	57.5
FMV	45.7	45.7	49.4	Х	56.5	50.8	54.8	57.4
MiMV	41.5	42.0	39.8	50.1	Х	50.2	50.9	58.9
CERV1	44.4	46.5	50.6	49.1	44.9	Х	62.0	98.7
CaMV	41.6	42.3	45.0	48.3	47.3	47.9	Х	71.0
CERV2	49.7	50.4	54.8	52.7	42.4	97.7	40.2	Х

Table 2. Percent nucleotide (below diagonal) and amino acid (above diagonal) sequence similarities between CPs of different caulimoviruses

For the caulimovirus abbreviations see their list on the front page.

BBRV (Acc. No. NC-003138). CERV1 (from the EMBL database, Acc. No. NC-003498). CERV2 (Indian isolate, Acc. No. AJ-549330). CaMV (Acc. No. NC-001497). FMV (Acc. No. NC-003554). MiMV (Acc. No. 004036). PCSV (Acc. No. NC-001634). SVBV (Acc. No. NC-001725).

CERV	MSLRNRTNPN	SIYVKGILKF	P <u>GYQTNLDLH</u>	CYVDTGSSLC	M <u>AS</u> KYV <u>IP</u> EE
CERV2	MSLRNRTNPN	SIYVKGILKF	PGY K.Q L e LH	CYVDTGSSLC	MASKYVIPEE
FMV	HLNVTNPN	SIYIEGKLSF	EGYKS.FNIH	CYVDTGASLC	IASRYIIPEE
MiMV	ANKTNPN	SIYIEAKVKF	KGYQT.LSLH	CYVDTGASLC	LASKHVIPDD
CaMV	EQVMNVTNPN	SIYIKGRLYF	KGYKK.IELH	CFVDTGASLC	IASKFVIPEE
SVBV	FSTLTKTNPN	SIYIRGNFYF	KGYKK.YSLD	LYVDTGASMC	TANKHVIPEE
BRRV	~~~~MNQN	NTFIKITISQ	KTIL	AYIDTGASLC	LLPEYNLPKQ
PCSV	~~~~MSSKN	SSFIKVKLFN	KYLY	AYIDTGATIC	LAQAKILPIK
Consensus	MSL-N-TNPN	SIYIKGKLKF	KGYKL-LH	CYVDTGASLC	LASKYVIPEE
CERV	YWQTAEKPLN	IKIANGKIIQ	LTKVCSKLPI	RLGGERFLIP	TLFQQESGID
CERV2	YWQTAEKPLN	IKIANGKIIQ	LTKVCSKLPI	RLGGERFLIP	TLFQQESGID
FMV	LWENSPKDIQ	VKIANQELIK	ITKVCKNLKV	KFAGKSFEIP	TVYQQETGID
MiMV	FWENAPRSIP	VKIANQSSIT	LNKVCRGLKI	NIAGNEFFIP	TIYQQETGID
CaMV	HWVNAERPIM	VKIADGSSIT	ISKVCKDIDL	IIAGEIFRIP	TVYQQESGID
SVBV	FWVNAKNPIR	ARIANDSIMT	FNKVAELMOV	OIADETFIIP	TLYOATTKGD
BRRV	LWKELKKPIT	IRVADKRELO	INKVALMITI	LIEKRKFLVP	TIYOFDSGVP
PCSV	YWKKMIKPIK	VRIANNKVIH	IWYKAVDLVL	LLEGKRFPLP	SVYOODAGLP
Consensus	YW-NAEKPIN	VKIANG-II-	I-KVCL-I	-IAGERFLIP	T-YOOESGID
				-	~~
CERV	LLL <u>GNNFC</u> QL	<u>Y</u> S <u>PFIQ</u> YT <u>D</u> R	IY <u>F</u> HLNKQS.	<u>V</u> I <u>I</u> G <u>K</u> IT	KAYQYGVKGF
CERV2	LLLGNNFCQL	YSPFIQYTDR	IYFHLNKQS.	VIIGKIT	KAYQYGVKGF
FMV	FLIGNNFCRL	YNPFIQWEDR	IAFHLKNE	MVLIKKVT	KAFSVSNPSF
MiMV	ILLGNNFCQT	YQPFIQWVDH	IAFHIKENNE	EKRVLIPKVR	IAMRKGHPGF
CaMV	FIIGNNFCQL	YEPFIQFTDR	VIFTKNK	SYPVHIAKLT	RAVRVGTEGF
SVBV	ITLGNNFCRL	YEPFVQYKDM	ITFHKD	GRAVSTKKVT	KAYFHGLPGF
BRRV	MIIGNNFLRL	YYPFCQYLSY	ITLRC		
PCSV	LILGNNFLKL	YNPFIQTLET	ISLRC		
Consensus	LLLGNNFCQL	Y-PFIQYTDR	I-FHL-KQNE	V-I-KVT	KAYGVPGF
CERV	LESMKKK s kv	NRPEPINITS	NOHL	FLEEGG NHVD	E ML YEIQISK
CERV2	LESMKKKYKV	NRPEPINITS	NÔHL	FLEEGG SNIE	ELCYEIOISK
FMV	LENMKKDSKT	EOIPGTNISK	NIIN	P	EERYFLITEK
MiMV	LEAMRKGSGK	KPVPGTNITO	EVID	D	EEKGFIEISK
CaMV	LESMKKRSKT	OOPEPVNIST	NKTENPLEET	ATLSEGRRUS	EEKLETTOOR
SVBV	LESKKVGSST	STENEENITE	VTINODNIS	KIEKGEEIGE	SEOLESTISA
BRRV		DEMINORO	EVIKIDIHHS	SOLIKAKI'I'N	LVTNIEEOLL
DCSV		DOLEKODS	SI.TTTKIVNT	FSLECCVIVN	TIKUUTATAT
Consensus	LESMKK-SKT	N-PEPINITS	NVIN-PIQHL	F-LEGG-I	EEKYFI-ISK
CERV	ͲϤϪͳͲͲͲͶͺϷͻ	VSSENDIDDF	KSKOWM		
CERV2	FSAIFFMLFR	VSSENDIDDE	KCKOMM		
FMV	VOKIEUTTOK	VCSENDIDDI	KSKOWM		
MiMV	LOLI LA	VCSENTIDEL	KCKCMM		
CaMV	NUKIELIIEK	VCCENDI DDM	KUKUMM		
Cariv			VIVÓMM		
	IIEVERLLDS	TCSFULTOR	TNUCUL		
DACA			KINKINKË KNDNOT		
PCSV	EDEVIQULEA	TCSONATOA	KINKINQT		
consensus	ғ-ғтғ-гтғК	VCSENP-DPE	KSKQWM		

Fig. 1 Multiple alignment of amino acid sequences of the enzymatic polyproteins of different caulimoviruses inclusive of the Indian isolate of CERV

Amino acids in bold show variable positions.

	PCSV	BRRV	SCBV	FMV	MiMV	CERV	CaMV	CERV2
PCSV	Х	60.2	54.0	54.0	55.4	54.7	55.9	54.6
BRRV	58.3	Х	53.1	51.8	51.6	53.1	54.5	60.2
SCBV	51.6	52.7	Х	63.4	63.3	65.2	63.2	56.9
FMV	51.5	53.3	58.3	Х	78.4	74.6	73.1	66.3
MiMV	51.2	52.5	57.6	67.2	Х	73.6	71.8	69.1
CERV	50.5	50.7	58.0	66.0	65.1	Х	77.6	97.2
CaMV	50.2	53.2	41.2	64.0	61.9	66.7	Х	70.5
CERV2	47.0	43.5	54.0	60.0	58.8	96.1	60.9	Х

Table 3. Percent nucleotide (below diagonal) and amino acid (above diagonal) sequence similarities between enzymatic polyproteins of different caulimoviruses

For the legend see Table 2.

Discussion

CERV is the only DNA virus reported to date in carnation, in which it causes mild symptoms. Yet it is more easily observed in carnation cultivars as a mixed infection with CarMV. In this study, the CERV infection was symptomless at temperatures over 28°C. The symptoms were most visible at 20-25°C, the optimum temperature also for the growth of carnations. Similar observations have also been made earlier by Lawson et al. (1977). Our bioassay results were similar to those reported earlier by Hakkaart (1968, 1972) and thus confirmed the CERV presence. The bioassay is an inexpensive but time and labor consuming method which requires considerable knowledge of the virus involved. Thus new target-specific methods may improve the efficiency of control strategies in the future. Therefore rapid, specific and sensitive methods for detection of all-important pathogens are required. On the other hand, for primary screening, maintenance and purification of a virus, we have to rely on the host range and bioassay.

In this study, when our bioassay CERV-positive results were checked by DAS-ELISA, 76% of them were confirmed as positive. These results indicate a wide spread of CERV in carnation cultivars in this part of the world.

Earlier reports on CERV infection in Asia have been based on preliminary observations such as host range, transmission by vectors and maintenance of the virus on tissue cultureraised carnations (Smookler and Loebenstein, 1975; Ram *et al.*, 1998). However, there are no such reports on molecular characterization or sequence analysis of CERV isolates from this part of the world. The methods used in this study for virus purification and nucleic acid isolation gave satisfactory results. Although no commercial kit enabling comparison of results was used for DNA isolation, the methods described are cost-effective and easy to perform.

The fact that the sequence similarity of both the partial genes to those available in the database was about 97% suggests that also the Indian isolate has conserved regions

in CP as well as enzymatic polyprotein genes. To maximize the sensitivity when comparing coding nucleotide sequences between different CERV isolates or caulimoviruses, translated nucleotide sequences were preferred, since they contained more tightly conserved sequences. The translated nucleotide sequences showed about 98-99% similarity among CP and enzymatic polyprotein genes. Other caulimoviruses were also compared to each other with respect to CP and enzymatic polyprotein genes. They tended to have a 40–50% similarity in the CP gene while a 37–62% similarity in the translated sequences. In the case of the enzymatic polyprotein gene among different caulimoviruses there was a 41-67% nucleotide similarity while the translated sequences showed a 53-79% similarity. One of the interesting features was that CaMV and CERV, despite the 48% nucleotide similarity, had a 62% amino acids similarity in the enzymatic polyprotein.

The deduced amino acid sequence for the Indian CERV isolate was also compared with corresponding translated sequences of other caulimoviruses. For the enzymatic polyprotein many similar short stretches were found between the recent Indian CERV isolate (Acc. No. AJ549330) and another CERV isolate (Acc. No. NC-003498), CaMV (Acc. No. NC-001497), Figwort mosaic virus (FMV, Acc. No. NC-003554) and Mirabilis mosaic virus (MiMV, Acc. No. NC-004036), which indicates that these viruses are closely related. The percentage similarity for this protein was highest with CaMV, lesser with FMV and MiMV and least with Peanut chlorotic streak virus (PCSV).

Similar results were also obtained when the deduced amino acid sequences corresponding to the CP gene were compared although similar stretches were fewer in number.

The translated amino acid sequences of the enzymatic polyprotein gene of the two CERV isolates revealed that they differ at two stretches (aa 24–28 and aa 187–193) and one position (aa 158). There is one missing amino acid at position 25 compared to the data from the database. At other positions, the changed amino acids are either polar (aa 24–

CERV2 CERV CaMV FMV MiMV SVBV	LCDICSLQSF LCDICSLQSF LCDICYLEEF LCNICELDNF LCDICLLDDF LCNLCSLESE	FC P YESNLYK FC D YESNLYK TCDYEKNMYK TCFYEKQINQ TCLFEKNLVH FCDYETNLLK	LPQNEYPSLV LPQNEYPSLV TELADFPGYI LKFEDFPKWI FEMSEMPAWV	KQYLAKIP KQYLAKIP NQYLSKIP ELYLGKIP ETYLRKIP	IVGEKAS VGEKAS IIGEKAL IIGKQSK IVGEISR EVGMEVI
	TOMOREFEE	VCOETUVVVM	TECDEDTEVM	NVETOVIDVD	
DCCV	ICDDCVIENE	FCOVENNVVK			
PCSV	LODICITENF	FCQVEANIIK	VIDRIGLL	DIVLORMPPP	MVIIIQIQIN
Consensus	LCDICSLESF	FCDIERNLIK	п-б-ғ-ь	EQIL-KIP-P	I-GERA-
CERV2	KRFEEEASAA	TSYSLGFAHK	LVNEELAKIC	ELSKKQKKLK	RFNKNCCSTF
CERV	KRFEEEASAA	TSYSLGFAHK	LVNEELAKIC	ELSKKQKKLK	RFNKNCCSTF
CaMV	TRFRHEANGT	SIYSLGFAAK	IVKEELSKIC	DLSKKQKKLK	KFNKKCCSIG
FMV	ERWDNEKSFT	TKYSLAFAKR	IIQEEIAKYC	DFQRTSKKLK	NFSKKCCSKN
MiMV	MIYNETKSPA	TTYSLAFATR	IVKTEIAKIC	EARSKAKQLK	RFS.QCCKKL
SVBV	EEYSKQDS.I	TKGSLGYAHN	LIKAYMEKKC	KSLKIKKEIR	RNMCCPKF
BRRV	SQKNANLI	PDTIRRYSQS	NKSIHILLQC	TKEQEKMQLI	NV.TKCCPKF
PCSV	DPSRTRRILT	LGLIRRFAIE	YRQNLC	LRKIEKNYIR	NVDPKCCKQL
Consensus	-RF-EEAS	T-YSLGFAHK	-VKEE-AKIC	ELSKK-KKLK	RFNKKCCSKF
_					
CERV2	EKPYEY	GCKPSY	SKKKKYSKKY	KPKYTKYKV.	.IR E .KKKFS
CERV	EKPYEY	GCKPSY	SKKKKYSKKY	KPKYTKYKV.	.IR K .KKKFS
CaMV	EASTEY	GCKKT.	STKKYHKKRY	KKKYKAYKP.	.YKK.KKKFR
FMV	SLDPLVSF	GCRDTKKKDF	KKSSKY.KAY	KKKKTLKKL.	.WKKKKRKFT
MiMV	SINDSENNQF	GCNKPSY	SSKR.KKY	EKSRRKV.	.WKKTKRKFA
SVBV	SSPETQY	GCKPISHKK.	AKKQKYKQYY	KKKYRLRKPK	RWTNSRRKYS
BRRV	EYIPHKF	GCSPNSSF	RRGRKRTKPK	YSKYKQRKYH	TFKPWYKKKR
PCSV	DDVPQEY	GCSQPY	RYKKKR.KP.	FRRIKARKY.	PYRKWKPKYR
Consensus	ESKP-EY	GCSP-SK-SY	SKKKKY-KKY	KKKYRKV-	-WKKWKKKF-
CERV2	PGKYFKP	KDKKS	.EKAKYCPKG	KKTCRCWVCN	IEGHYANECP
CERV	PGKYFKP	KDKKS	.EKAKYCPKG	KKTCRCWVCN	IEGHYANECP
CaMV	SGKYFKP	KEKKG	. SKQKYCPKG	KKDCRCWICN	IEGHYANECP
FMV	PGKYFSKKKP	ЕК	FCPQG	RKKCRCWICT	EEGHYANECP
MiMV	PSKYFKRKSS	KKDKN	.PRKNFCPQG	KKKCRCWICS	EEGHYANECP
SVBV	GRKLFRRKRD	QKEETSQQSP	EEKKKFCPQG	KTTCRCWICN	EIGHFAKDCR
BRRV	.YRMYKRKYQ	PKYKQRYWKN	KSNQKYCPKG	KKDCKCWICQ	EDGHYANECP
PCSV	.YKVRRKGYS	KQ	QNKQKTCPRG	KKTCRCWICQ	EEGHYANECP
Consensus	PGKYF-RKKP	KKKKSK-	-EKQKYCPKG	KKTCRCWICN	EEGHYANECP
CERV2	NROTS EKFK	LTOTAENYCI.	EPTENPYEDO	OETCLL	EOTOLSSSDS
CERV	NROTS EKEK	LICIAENVGL	EPIENPYEDO	OFICIA	FOTOLSSSDS
CaMV	NROSS EKAH	TLOOAEKIGI	OPTEEPYEGV	OEVEILEYKE	EEEETSTEES
FMV	NEKSHOEKVK	TLTHGMNEGY	VPLEDAYTCN	LEVESMETTE	E TTSEE
MiMV	NEGRNDEENK	TTTKGAUUDA	FDVFDMVFCT	LHUVGVEV	
SVBV	NKSZNHNK	ITEFI.OSI.OI.	FDVFDLNFLK	TEEKEME I'K	FVGFGGFGFG
	NKOANIINK	TIEFU COMMI	EFVEDINELK	TEERLWE.DK	LOTERC
DCCV	NEVINOVVEN		EFIENDNISE RDIFFDVFTD	ECIMI	
Concensus	NPOOFKVK	IVENLISVGI	EPIEEDIEID	OFV_LEVIE	FOT-L-DGEG
Consensus	MRQQERVR	10050-60	EFIE-FIEGQ	QEVDEITE	EQT-D-D2E2
CERV2	ELDDTYEESS	SEESE			
CERV	ELDDT C EESS	SEESE			
CaMV	DGSSTSEDSD	SD~~~			
FMV	ESTTSDSSSS	DDEQL			
MiMV	~~~~~~	~~~~			
SVBV	EISSD.ESSD	SEDLE		Fig 2	
BRRV	EEENSSDESE	OYFYO	Multiple alignment	of amino acid secu	ences of the CPs of different
PCSV	ESENEFEE~~	~~~~~	caulimovirus	es inclusive of the I	ndian isolate of CERV
Consensus	ETSEESS	SE-SE	Amino	acids in bold show v	variable positions.

28) or bulky hydrophobic or bulky aliphatic (aa 187–193); functional effects of these changes need be investigated.

The amino acid sequence of the CP and enzymatic polyprotein were deduced from the gene sequences and compared to an other CERV isolate and other caulimoviruses. It was found out that within the CERV isolates, the CP sequence was more conserved in comparison to the enzymatic polyprotein. The difference between the two CERV isolates was only at three positions, namely 13, 144 and 256, while between the CERV isolates and other caulimoviruses, enzymatic polyprotein is more conserved.

The data presented here indicate that the CERV isolates separated in time and space present a high genetic stability. Thus our results correspond to those found for other viruses such as Carnation mottle virus (Canizares *et al.*, 2001), Citrus tristeza virus (Albiach-Marti *et al.*, 2000) and Turnip yellow mosaic virus (Blok *et al.*, 1987). High genetic stability of CERV may be due to the facts that CERV isolates have evolved from the same original CERV sequence in carnation cultivars, and because of global market of cut flowers and vegetative propagation they have dispersed around the world.

Acknowledgement. The authors thank the Director of the Institute for providing the research facilities and Mr. P. Navaghare (both from the Institute of Himalayan Bioresource Technology, Palampur, India) for help with nucleotide sequencing, and the Department of Biotechnology, Government of India, for financial support (grant No. BT/PR/1790/AGR/08/126/99).

References

- Albiach-Marti' MR, Mawassi M, Gowda S, Satyanarayana R, Hilf ME, Shanker S, Almira EC, Lo'pez C, Guerri J, Flores R, Morpeno P, Garnsey SM, Dawson, WO (2000): Sequence of *Citrus tristeza virus* separated in time and space are essentially identical. J. Virol. 74, 6856–6865.
- Altschul SF, Thomas LM, Alejandro AS, Jinghui Z, Zheng Z, Webb M, David JL (1997): Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res.* 25, 3389–3402.
- Blok J, Mackenzie A, Guy P, Gibbs AJ (1987): Nucleotide sequence comparisons of *Turnip yellow mosaic virus* isolates from Australia and Europe. Arch. Virol. 97, 283–295.
- Bremer K, Lahdenpera ML (1981): Virus diseases in carnation and chrysanthemum cuttings imported into Finland. *Ann. Agri. Fenn.* **20**, 214–228.
- Canizares MC, Marcos JF, Pallas V (2001): Molecular variability of twenty-one geographically distinct isolates of *Carnation mottle virus* (CarMV) and phylogenetic relationships within the *Tombusviridae* family. *Arch. Virol.* 146, 2039–2051.
- Clark MF, Adams AN (1977): Characteristics of the microplate method of enzyme linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 34, 475–483.

- Corpet F (1988): Multiple sequence alignment with hierarchical clustering. *Nucleic Acids Res.* **16**, 10881–10890.
- Covey SN, Noad RJ, Al-Kaff NS, Turner DS (1998): Caulimovirus isolation and DNA extraction. In Foster GD, Taylor SC (Eds): *Plant Virology Protocols from Virus Isolation to Transgenic Resistance*. Humana Press, New Jersey, USA, pp. 53–63.
- Devergne JC (1984): The virus diseases of carnation and the production of healthy plants. *Phytoma* **363**, 30–32.
- Hakkaart FA (1968): *Silene armeria*, a test plant for carnation etched ring virus. *Neth. J. Plant Path.* **74**, 150–158.
- Hakkaart FA (1972): Detection of carnation viruses with the test plant *Saponaria vaccaria*: "Pink Beauty". *Acta Hort*. **36**, 35–46.
- Holmes DS, Quingley M (1981): A rapid boiling method for the preparation of bacterial plasmids. Ann. Biochem. 114,193–197.
- Hull R, Sadler J, Longstaff M (1986): The sequence of carnation etched ring virus DNA: comparison with cauliflower mosaic virus and retroviruses. *EMBO J.* 5, 3083–3090.
- Lawson RH, Hearson SS, Cirerolo EL (1977): Carnation etched ring virus. *CMI/AAB Descr. Plant Viruses*, No. 182.
- Lisa V (1995): Carnation. In Loebenstein G, Lawson RH, Brunt AA (Eds): Virus and Virus like Diseases of Bulb and Flower Crops. John Wiley & Sons, UK, pp. 385-395.
- Lommel SA, McCain AH, Mayhew DE, Morris TJ (1983): Survey of commercial carnation cultivars for four viruses in California by indirect enzyme-linked immunosorbent assay. *Plant Dis.* 67, 53–56.
- Pallas V, Sanchez-Navarro JA, Canizares MC, Cano EA (1999): A new test for detecting carnation viruses. *Flora Culture Int.* 9, 32–34.
- Ram R, Sharma A, Zaidi AA (1998): *In vitro* multiplication of carnation etched ring virus in *Dianthus caryophyllus* L. for virus purification and culture maintenance. *Indian J. Virol.* 14, 127–130.
- Rana GL (1984): Presence of carnation etched ring virus in Italy. Informatore-Fitopatologico **34**, 51–53.
- Rodoni BC, Hepworth G, Richardson C, Moran JR (1994): The use of a sequential batch testing procedure and ELISA to determine the incidence of five viruses in Victorian cut-flower Sim carnations. *Aust. J. Agri. Res.* **45**, 223–230.
- Sambrook J, Fritsch EF, Maniatis T (1989): *Molecular Cloning: A Laboratory Manual*. Cold Spring Harbor Laboratory, New York.
- Sanchez-Navarro JA, Canizares MC, Cano EA, Pallas V (1999): Simultaneous detection of five carnation viruses by nonisotopic molecular hybridization. *J. Virol. Methods* **82**,167–175.
- Sanger F, Nickelen S, Coulson AR (1977): DNA sequencing with chain termination inhibitors. *Proc. Natl. Acad. Sci.* USA 74, 5463–5467.
- Smookler M, Loebenstein G (1975): Viruses of carnation identified in Israel. *Phytopathologia-Mediterranea* **14**, 1–5.
- Tatusova AT, Maiden TL (1999): Blast 2 sequences a new tool for comparing protein and nucleotide sequences. *FEMS Microbiol. Lett.* **174**, 247–250.