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summary. – Hemorrhagic fever with renal syndrome (HFrS) caused by Hantaan virus (HTnV) is character-
ized by vascular hemorrhage and acute renal failure. Angiopoietin-1 (Ang-1) is a glycoprotein that maintains 
vessel integrity and reduces endothelial permeability. we found that in HTnV-infected human umbilical vein 
endothelial cells (HUVECs) the levels of Ang-1 mrnA and protein were reduced on days 2 and 3 post-infec-
tion (p.i.), when endothelial permeability was increased. The HTnV-stimulated permeability was reduced by 
treatment of HUVECs with Ang-1. The plasma Ang-1 level was lower in HFrS patients than in healthy persons. 
Paired plasma samples of HFrS patients revealed markedly lower Ang-1 levels during the acute phase of HFrS 
as compared to the convalescent phase. These findings suggested that HTnV reduced the Ang-1 expression in 
endothelial cells that might play an important role in the increase of vascular permeability in HFrS. 
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introduction

Viral hemorrhagic fevers (VHFs) are caused by four wide-
ly different rnA virus families, namely Flaviviridae, Arena-
viridae, Bunyaviridae, and Filoviridae. VHFs are associated 
with severe outbreaks in humans and are included in the 
category of emerging infectious diseases. Even though the 
common clinical features of VHFs are fever and hemorrhage, 
the pathogenesis of VHFs differs according to the infecting 
virus. Hantaviruses that belong to the family Bunyaviridae 

cause HFrS and hantavirus pulmonary syndrome in humans 
(Linderholm and Elgh, 2001; nichol et al., 1993). HTnV, 
a type species in the genus Hantavirus, causes a severe form 
of HFrS. Macroscopic pathologic findings of HFrS include 
hemorrhage, congestion, infarct-like necrosis, and edema in 
several organs (Lee et al., 1980). Microscopically, HTnV-
mediated hemorrhage originates from extravasation of red 
blood cells from capillaries rather than by a rupture of the 
vasculature (kim, 1976). HTnV is not a cytolytic virus and 
consequently, the HFrS is based on the increased vascular 
permeability and coagulation disorders (Ala-Houhala et al., 
2002; nolte et al., 1995; Cosgriff, 1991). Tumor necrosis 
factor-α, vascular endothelial growth factor, and cytotoxic 
T cell-mediated mechanisms have been suggested as a cause 
for the increased vascular permeability associated with 
hantavirus diseases (gavrilovskaya et al., 2008; Hayasaka 
et al., 2007; niikura et al., 2004; khaiboullina et al., 2000). 
Additionally, the reduction of von willebrand factor upon 
HTnV infection of endothelial cells has been suggested 
as one of the factors of hemorrhage in HFrS (Cho et al., 
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2007). However, none of the mechanisms described above 
is able to explain sufficiently the capillary leakage associ-
ated with HFRS.

Ang-1 is a secreted protein expressed by endothelial and 
periendothelial cells (Gescher et al., 2004; Ahmad et al., 
2001). The main functions of Ang-1 are the maintenance 
of vessel integrity, reduction of endothelial permeability, 
and induction of anti-inflammatory effects (Gamble et al., 
2000). Ang-1 prevents the vascular permeability induced by 
platelet activating factor, bradykinin, and histamine (Pizurki 
et al., 2003). Ang-1 is a ligand for tyrosine kinase with 
immunoglobulin and epidermal growth factor homology 
domains-2 (Tie-2) receptor, which is also known as endothe-
lial-specific receptor for tyrosine kinase. Tie-2 is expressed 
predominantly in vascular endothelial cells (Vikkula et al., 
1996). Ang-1 mediates vessel maturation and maintains ves-
sel integrity by recruiting periendothelial cells. Moreover, 
Ang-1 induces a chemotactic response and results in network 
formation, sprouting, survival and apoptosis in endothelial 
cells (Kim et al., 2000a,b; Thurston et al., 2000, 1999; Papa-
petropoulos et al., 1999; Koblizek et al., 1998; Witzenbichler 
et al., 1998). However, it does not induce cell proliferation. 
Ang-1 protects the adult vasculature against plasma leakage 
and promotes firm attachment of the endothelium. In spite 
of the previous findings, the influence of Ang-1 on vascular 
dysfunction in HFRS remains unclear. 

The aim of the present study was to investigate the 
molecular mechanism of increased vascular permeability 
represented in HFRS. We measured the concentration of 
Ang-1 protein in plasma from HFRS patients and healthy 
persons and also the protein and mRNA expression levels 
of Ang-1 in HTNV-infected HUVEC.

Materials and Methods

Virus and cell culture. The HTNV strain ROK 84-105 was 
propagated in Vero E6 cells (ATCC CRL-1586) for the prepa-
ration of a stock virus. Vero E6 cells were grown in DMEM 
supplemented with 10% FBS and antibiotics (Cambrex). Cul-
ture supernatants were harvested 7 days p.i., centrifuged, and 
the HTNV stocks were stored at -80°C until used. HUVECs 
(Modern Cell & Tissue Technologies) were allowed to grow in 
endothelial cell basal medium-2 (Cambrex) supplemented with 
2% FBS, human fibroblast growth factor, human recombinant 
insulin-like growth factor, ascorbic acid, vascular endothelial 
growth factor, human recombinant epidermal growth factor, 
heparin, and hydrocortisone. Confluent HUVECs obtained 48 
hrs after plating were inoculated with HTNV at a multiplicity 
of infection of 1 and incubated for 1 hr. Then, the inoculum 
was removed and fresh medium was added. HTNV-infected 
and non-infected HUVECs (control cells) were incubated for 
1, 2, 3, and 5 days p.i. 

Immunofluorescence assay (IFA) was performed as previously 
described (Cho et al., 2007). Briefly, infected or non-infected cells 
were treated with human anti-HTNV (HFRS patient's serum) 
or rabbit anti-Ang-1 IgG (Abcam). Then, the cells were stained 
with mouse anti-human IgG-FITC (Jackson ImmunoResearch 
Laboratories) or with goat anti-rabbit IgG-Cy3 (Sigma-Aldrich). 
Stained cells were washed and incubated with nuclear stain 
Hoechst 33258 (1:5,000), mounted in Vector shield (Vector), and 
cover-slipped. The slides were examined under a fluorescence 
microscope (Zeiss).

Isolation of total RNA and RT-PCR. Total RNA was isolated 
using the RNA-Bee™ system (Tel-Test). RNA yields were 
quantified by A260 measurements. RT-PCR was performed as 
previously described (Kim et al., 2007). The primer sequences 
were for glyceradenyl-3-phosphate-dehydrogenase (GAPDH) 
forward 5'-ACC CAC TCC TCC ACC TTT G, reverse 5'- ATC 
TTG TGC TCT TGC TGG G (188 bp); for Ang-1 forward 5'-ACC 
CGA GCC TAT TCA CAG TA, reverse 5'-CAT TCA GTT TTC 
CAT GGT TT (272 bp); for HTNV S segment forward 5'-GGC 
CAG ACA GCA GAT TGG, reverse 5'-AGC TCA GGA TCC 
ATG TCA TC (878 bp), and for Tie-2 forward 5'-CAA ATT 
CAG TCC AGG ATG C, reverse 5'-AAT GTC ACC CAG GTC 
TTC (178 bp).

Western blot analysis. The infected or non-infected cells were 
harvested in lysis buffer and the protein content was quantified by 
Bradford assay (Bio-Rad). Western blotting was performed as de-
scribed previously (Kim et al., 2007). The primary antibodies were 
Ang-1, Tie-2 (Santa Cruz Biotechnology), and mouse anti-tubulin 
(Sigma-Aldrich). Anti-rabbit IgG-horseradish peroxidase (HRP) 
(Zymed) and anti-mouse IgG-HRP (Santa Cruz Biotechnology) 
were used as the secondary antibodies. 

Vascular permeability. The permeability assay consisted of 
measuring the passage of HRP (Sigma-Aldrich) through conflu-
ent HUVEC monolayers grown on Transwell™ polycarbonate cell 
culture inserts (3 µm pore size and 12-well cluster plate; Costar) as 
described previously (Rabiet et al., 1996). The permeability assay 
was performed on the day 2 p.i. The HUVECs used as the positive 
control were exposed to 1 U/ml of thrombin (Sigma-Aldrich) for 
2 hrs and then were incubated with or without 250 ng/ml of Ang-1 
(R&D Systems) for 2 hrs. The Transwell™ insert was transferred to 
a new plate containing serum-free medium. HRP (500 ng/ml) was 
added to the upper insert compartment and after 1 hr incubation at 
37°C, the medium in the lower compartment was collected. HRP 
enzymatic activity was evaluated according to the manufacturer's 
instruction and the A470 values were taken. The data were expressed 
in ng/ml of HRP that crossed the Transwell™ membrane. 

Plasma samples of 17 HFRS patients, 3 non-HFRS patients 
(who exhibited symptoms similar to that of HFRS, but were 
serologically negative), and 5 healthy individuals were obtained 
from Soonchunhyang University Cheonan Hospital and Yeungnam 
University Hospital.

Ang-1 ELISA. Plasma Ang-1 levels were quantified by the 
Quantikine™ ELISA kit (R&D Systems). Three paired plasma 
samples obtained from acute and convalescent phase HFRS pa-
tients were also compared. ELISA was performed according to the 
manufacturer's protocol and the values A450 were taken.
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Results and Discussion

HTNV suppresses Ang-1 expression

One of the characteristics of HFRS caused by HTNV 
is an increased vascular permeability. Therefore, we exam-
ined the effects of HTNV on Ang-1 levels in HUVECs. To 
determine the influence of HTNV on Ang-1 transcription, 
RT-PCR was performed in the non-infected and HTNV-
infected HUVECs. The Ang-1 mRNA levels were lower in 
HTNV-infected HUVECs than in control HUVECs from 
day 1 to day 5 p.i. The Ang-1 mRNA levels were markedly 
lower on day 2 and 3 p.i. (Fig. 1a). HTNV replication was 
confirmed by RT-PCR based on the detection of 897 bp 
S segment of HTNV RNA in HTNV-infected HUVECs. 
HTNV replication was very high at day 1–3 p.i. (Fig. 1b). 
Altogether, these findings suggested that Ang-1 mRNA 
levels were suppressed by the HTNV replication. 

The indirect IFA was performed to investigate the locali-
zation and pattern of Ang-1 expression in HUVECs. The 
infected and non-infected HUVECs were immunostained 

with antibodies against Ang-1 (red fluorescence) and 
HTNV (green fluorescence), and then counterstained with 
Hoechst 33258 (blue fluorescence) to identify nuclei. Con-
trol HUVECs exhibited very strong Ang-1 signals through-
out the cytoplasm (Fig. 2a, upper panel). However, Ang-1 
was weakly stained in HTNV-infected HUVECs, especially 
at day 2 and 3 p.i., what corresponded with the high rate of 
viral replication (Fig. 2a, lower panel). HTNV appeared as 
discrete pinpoint granules distributed in the perinuclear region 
of the cytoplasm, but it was absent from control HUVECs 
(Fig. 2a). Interestingly, the cells that did not express HTNV 
among the HTNV-infected HUVECs exhibited low Ang-1 
signals (Fig. 2a, arrow heads) suggesting that the regulation 
of Ang-1 by HTNV may be both direct and indirect. Ang-1 
protein levels were also evaluated by Western blotting. Two 
bands at approximately 55 K and 70 K were detected (Fig. 2b), 
and the 55 K band represented non-glycosylated Ang-1 and 
the 70 K band represented glycosylated Ang-1 ( Hwang et al., 
2007; Davis et al., 1996). The 55 K band was rarely detected 
at 1 day p.i. in both control and HTNV-infected HUVECs. 
The intensity of both bands was lower in HTNV-infected 

Fig. 1

Ang-1 mRNA levels in HTNV-infected HUVECs
(a) Ang-1 mRNA. (b) HTNV S segment mRNA.
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Fig. 2

Ang-1 protein levels in HTNV-infected HUVECs
(a) IFA: Ang-1 (red), HTNV (green), cell nuclei (blue). (b) Western blot analysis.

HUVECs than in the controls between days 2–5 p.i. (Fig. 2b). 
The data based on these experiments suggested that HTNV 
infection could reduce Ang-1 expression at both mRNA 
and protein levels.

HTNV does not affect Tie-2 mRNA and protein levels

As Tie-2 is a receptor for Ang-1, we investigated whether 
the mRNA and protein levels of Tie-2 were altered in HTNV-
infected HUVECs. Tie-2 mRNA levels did not change after 
HTNV infection of HUVECs between days 1–5 p.i. (Fig. 3a). 
Tie-2 protein levels were also not significantly different 
between the infected and non-infected HUVECs during that 
time period (Fig. 3b).

Ang-1 restores vascular permeability in HTNV-infected 
HUVECs

To investigate the role of Ang-1 in the HTNV-infected 
HUVECs, a permeability assay was performed on the day 
2 p.i. Thrombin was used as the positive control for this assay 
because it has been previously shown to increase endothelial 
permeability (Rabiet et al., 1996). Treatment with thrombin 
induced a 1.8-fold increase in the permeability of HUVECs 
(Fig. 4). Addition of Ang-1 to thrombin-treated endothelial 
cells restored the normal levels of the endothelial permeabil-
ity (Fig. 4). Endothelial permeability was increased 2-fold in 
HTNV-infected HUVECs relative to the control HUVECs. 
However, treatment of HTNV-infected HUVECs with 
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250 ng/ml Ang-1 decreased this permeability by 1.3-fold 
(Fig. 4). Our observations indicated that HTNV could 
decrease the Ang-1 expression, thus increasing the perme-
ability, while intact Tie-2 was able to restore vascular per-
meability by the treatment with Ang-1 in HTNV-infected 
endothelial cells. 

Plasma Ang-1 levels are lower in HFRS patients com-
pared with healthy individuals

To determine the levels of Ang-1 in HFRS patients, we 
used an ELISA assay. We examined plasma Ang-1 levels 
from 17 HFRS patients, 3 non-HFRS acute febrile patients, 
and 5 healthy individuals. The mean plasma Ang-1 levels 
were 1,271 (range 19.5–3,169), 3,492 (range 2,407–5,307), 
and 3,226 pg/ml (range 1,974.5–5,307) in HFRS patients, 
non-HFRS patients, and healthy individuals, respectively. 
Therefore, the mean plasma Ang-1 levels of HFRS patients 
were lower than those of the other two groups (Fig. 5a). In ad-
dition, we also compared the Ang-1 levels of 3 paired plasma 
samples collected in acute and convalescent phase of HFRS 

Fig. 3

Tie-2 mRNA and protein levels in HTNV-infected HUVECs
(a) RT-PCR. (b) Western blot analysis.

Fig. 4

Permeability of HTNV-infected HUVECs
Mean ± SD values from triplicate experiments.
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patients.	The	Ang-1	levels	were	3.5–7.7-fold	lower	in	the	acute	
phase	of	the	illness	than	in	the	convalescent	phase	(Fig.	5b).	
These	observations	are	consistent	with	 the	drop	of	plasma	
Ang-1	levels	upon	HTNV	infection	in	HFRS	patients.

In	summary,	HTNV	infection	reduced	the	transcription	
and	translation	of	Ang-1.	In	addition,	the	increased	endothe-
lial	permeability	by	HTNV	infection	could	be	reduced	by	
treatment	with	Ang-1.	The	plasma	Ang-1	 levels	 in	 acute	
phase	of	HFRS	patients	were	markedly	lower	than	those	of	
healthy	individuals	or	convalescent	phase	of	HFRS	patients.	
Therefore,	a	reduced	expression	of	Ang-1	caused	by	HTNV	
infection	could	contribute	to	the	endothelial	permeability	in	
HFRS	patients	and	might	be	one	of	the	factors	responsible	
for	the	pathogenesis	of	HFRS.
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