E-Cadherin truncation and Sialyl Lewis-X overexpression in oral squamous cell carcinoma and oral precancerous conditions

M. H. SHAH¹, R. N. SAINGER¹, S. D. TELANG², G. H. PANCHOLI¹, S. N. SHUKLA¹, P. S. PATEL¹

¹ Biochemistry Research Division, The Gujarat Cancer and Research Institute, Asarwa, Ahmedabad, India, e-mail: prabhudas_p@hotmail.com; ² Biochemistry Department, M. S. University of Baroda, Vadodara, Gujarat, India

Received: April 9, 2008

The present study aimed to determine significance of E-cadherin, a cell adhesion molecule, and sialyl Lewis-X (sLe-X), a cell surface antigen, in oral carcinogenesis. Expressions of E-cadherin and sLe-X were detected using western blot analysis from oral malignant (n=25), and oral precancerous tissues (OPC, n=20) and their adjacent normal tissues. An altered expression of E-cadherin (E-cad) and sLe-X was observed in malignant and precancerous tissues. E-cad western blot revealed presence of two bands, a 120 kDa (native, E-cad120) and a 97 kDa (known as truncated E-cad97). The accumulation of truncated E-cad97 and sLe-X in malignant and OPC tissues compared to their adjacent normal tissues was observed. Receiver's Operating Characteristics (ROC) curve analysis showed good discriminatory efficacy of E-cad97, E-cad97:120 ratio and sLe-X between the malignant and adjacent normal tissues. Further, a positive correlation of E-cad97 and sLe-X overexpression with advanced stage of the disease and lymphnode metastasis was observed. The data suggest that E-cadherin truncation and sLe-X overexpression are early events which may facilitate the tumor cells to metastasize. Also, overexpression E-cad97 and sLe-X in OPC tissues may be useful to predict metastatic potentials of tumors at an early stage of oral carcinogenesis.

Key words: Oral cancer, oral precancerous conditions, E-cadherin, sialyl Lewis-X, metastasis

Epithelial tumors are the predominant form of cancer metastasis and oral cancer is one of the epithelial neoplasias. A high transformation rate ranging from 6 to 36% from OPC to oral cancer have been reported [1]. Despite the number of studies aimed at the improvement of the early diagnosis and treatment of patients with oral squamous cell carcinoma (OSCC), their prognosis and survival remains poor [2]. Only about 15% of the oral cancer patients are diagnosed at an early stage. Unfavorable prognosis of OSCC is mainly due to extensive local invasion, frequent lymphnode metastasis and local recurrence of tumors. The metastatic dissemination of tumor cells is the primary cause of morbidity and mortality in cancer patients. Recent studies reported that most cancer cells in primary tumor have a 'metastatic phenotype', indicating that metastatic spread is an early event in tumorigenesis [3, 4].

Several critical steps are involved in the metastatic cascade depend on cell surface molecules such as E-cadherin and carbohydrate ligand/ receptors like sialyl Lewis-X (sLe-X). These molecules play an important role in cell-adhesion, intracellular signal transduction, cell-to-cell and cell-matrix communications, and cell migration. Cell adhesion molecules, such as E-cad, is essential for maintaining the stable structure of stratified squamous epithelium. E-cad, a 120 kDa (E-cad120) transmembrane glycoprotein mediates homophilic adhesion in epithelial cells and is a major determinant of epithelial cell differentiation and tumor progression. It has been shown to play a role in anchorage-dependent growth and survival of SCC [5]. Suppression or post-translational changes of E-cad expression is one of the molecular events responsible for dysfunction of cell adhesion [6]. Loss of E-cad expression or functions has been demonstrated to be associated with tumor development and progression [7, 8]. Further, re-expression of native E-cad restores cell adhesion functions and reduces the invasiveness of cancer cells, which referred E-cad as the invasion suppressor gene [9]. Loss of E-cad expression is one of the characteristics for epithelial-mesenchymal transition, which increase cell motility and promote tumor invasion [10]. Thus, the control of cellular adhesion and motility is one of the crucial mechanisms during carcinogenesis as their functional loss is characterized by rapid tumor initiation and progression.
Cell surface carbohydrate sLeX, a tetrasaccharide (NeuAcα2→3Galβ1→4[Fucα1→3] GlcNAcβ1→R), is characteristic of various stages of differentiation. It plays an important biological role in the recruitment and extravasation of leukocytes [11]. Several clinical studies have shown significantly increased sLeX expression on cancer cells and correlated with cancer progression [12–14]. sLeX is frequently expressed on human cancer cells; serve as ligand for E- and P-selectin present on vascular endothelial cells [11, 15]. The degree of expression of this ligand at the cancer cells surface is thought to be correlated with the frequency of hematogenous metastasis and prognostic outcome of cancer patients [16–18]. It has been shown that expression of sLeX in mucin-type O-glycans is highly associated with lymphatic and venous invasion [19].

Although, E-cad and sLeX are crucial for many cellular mechanisms associated with cancer cell invasion and metastasis, there is lack of reports on their simultaneous evaluation in oral cancer and OPC. The present study evaluates E-cad truncation and sLeX overexpression in oral cancer and the precancerous conditions as well as their correlation with various clinicopathological characteristics.

Patients and Methods

Patients. The study enrolled 25 untreated patients with OSCC and 20 patients with OPC from out patients’ department of The Gujarat Cancer & Research Institute, Ahmedabad. The disease was diagnosed based on patients’ clinical, radiological and histopathological examinations. The TNM staging of tumors was determined according to the guidelines from the World Health Organization (WHO) classification [20]. Distribution of oral cancer patients with regard to various clinicopathological characteristics including age, stage, tumor differentiation, nuclear grade and lymphnode metastasis is provided in table 1. All patients were diagnosed having SCC and 17/25 patients had advanced stage of the disease (Stage III+IV).

Tissue specimens. Fresh oral tumors and adjacent normal tissues (N=25) were collected immediately after surgical resection. The adjacent normal tissues were selected from the free margins at least 1-2 cm away from the tumor as defined by the pathologist. Similarly, precancerous tissues and their matched pairs (N=20) were collected at the time of biopsy. Histopathological confirmation of tumor, OPC and adjacent normal regions of each tissue were done by a pathologist. Tissues were washed with PBS to remove blood debris and immediately stored at −70°C until analyzed.

Preparation of protein lysates and western blot analysis. Tissues were washed with cold (4°C) PBS and homogenized in protein lysis buffer [50 mM Tris pH 7.5, 120 mM NaCl, 0.5% Nonidet p-40, a protease inhibitor cocktail]. This was followed by 1 hour incubation at 4°C and centrifugation. The supernatants were collected and total protein concentrations determined with Lowry method using bovine serum albumin (BSA) as a standard.

![Image](image-url)

<table>
<thead>
<tr>
<th>Oral Cancer patients</th>
<th>N = 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Range 19-46 years</td>
</tr>
<tr>
<td></td>
<td>Median 42 years</td>
</tr>
<tr>
<td>Sites</td>
<td>Buccal mucosa N = 10</td>
</tr>
<tr>
<td></td>
<td>Tongue N = 7</td>
</tr>
<tr>
<td></td>
<td>Alveolus N = 5</td>
</tr>
<tr>
<td></td>
<td>Lip N = 3</td>
</tr>
<tr>
<td>Histopathology</td>
<td>Squamous cell carcinoma</td>
</tr>
<tr>
<td>TNM Stage</td>
<td>Stage I N = 3</td>
</tr>
<tr>
<td></td>
<td>Stage II N = 5</td>
</tr>
<tr>
<td></td>
<td>Early stage (I+II) N = 8</td>
</tr>
<tr>
<td></td>
<td>Stage III N = 5</td>
</tr>
<tr>
<td></td>
<td>Stage IVA N = 10</td>
</tr>
<tr>
<td></td>
<td>IVB N = 2</td>
</tr>
<tr>
<td>Advanced stage (III+IV)</td>
<td>N = 17</td>
</tr>
<tr>
<td>Lymphnode involvement</td>
<td>No N = 11</td>
</tr>
<tr>
<td></td>
<td>Yes N = 14</td>
</tr>
<tr>
<td>Tumor differentiation</td>
<td>Well N = 10</td>
</tr>
<tr>
<td></td>
<td>Moderate or Poor N = 15</td>
</tr>
<tr>
<td>Nuclear Grade</td>
<td>I N = 11</td>
</tr>
<tr>
<td></td>
<td>II / III N = 14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patients with OPC</th>
<th>N = 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Range 15-38 years</td>
</tr>
<tr>
<td></td>
<td>Median 25 years</td>
</tr>
<tr>
<td>Precancerous conditions</td>
<td></td>
</tr>
<tr>
<td>Leukoplakia</td>
<td>N = 8</td>
</tr>
<tr>
<td>Submucous fibrosis</td>
<td>N = 12</td>
</tr>
</tbody>
</table>

OPC – oral precancerous conditions

Table 1. Clinical details of the patients with oral cancer and oral precancerous conditions

Aliquots of whole tissue protein from each malignant, OPC and adjacent normal tissues were mixed with an appropriate volume of sample laemelli buffer (6X) containing SDS (4%), Tris (125mM) and DTT prior to being boiled at 95°C for 5 min. Equal amounts (50µg) of protein were then separated by electrophoresis using 8% SDS-polyacrylamide gels and transferred to nitrocellulose membranes (Amersham). The equal protein loading and transfer onto membrane was confirmed by Ponceau S staining. After blocking with 5% non-fat milk in a buffer containing Tris-HCl (20mM, pH 7.5), NaCl (100mM) and Tween 20 (0.1%), membranes were incubated at 4°C overnight either with primary antibodies against E-cad (2µg/ml dilution) or sLeX (1µg/ml dilution). Membranes were then washed with TBS-T for 30 min and incubated for 2 hours at room temperature with appropriate secondary antibodies conjugated to horseradish peroxidase (1:1000 dilution). Immunoreactive bands were then visualised using enhanced chemiluminescence detection system (ECL detection kit, Amersham Pharmacia, UK). The Gel documentation Bio-imaging system was used to...
capture the images and densitometry analysis (Bio-Rad, USA). The band density was expressed as OD/mm². The ratio for E-cad⁹⁷: E-cad¹²⁰ was also calculated.

Antibodies. The HECD-1 mouse monoclonal antibody (Calbiochem, USA) was used to detect the full-length E-cad¹²⁰ and truncated E-cad⁹⁷. Clone KM-93 (Chemicon, USA) mouse monoclonal antibody was used to detect the sLe⁸. The anti-mouse horseradish peroxidase conjugated secondary antibody was used to detect the protein (Amersham).

Statistical analysis. Data were analyzed using the SPSS statistical software (version 10). Student’s paired t-test was performed to compare E-cad¹²⁰, E-cad⁹⁷, E-cad⁹⁷:¹²⁰ ratio and sLe⁸ in oral malignant or OPC tissues with their adjacent normal tissues. Multivariate analysis was performed to assess the correlation of E-cad¹²⁰, E-cad⁹⁷ and sLe⁸ expression in malignant tissues with various clinicopathologic characteristics of OSCC. Receiver’s operating characteristic (ROC) curves were constructed to evaluate discriminatory efficacy of E-cad¹²⁰, E-cad⁹⁷, E-cad⁹⁷:¹²⁰ and sLe⁸ between oral malignant and adjacent normal tissues. The values were expressed as mean ± standard error of mean (S.E.M.). p values equal to or less than 0.05 were considered statistically significant.

Results

E-cadherin truncation in oral cancer and OPC tissues. The Fig. 1 is the representative western blot for E-cad in oral tumors (1A) and OPC tissues (1B) with their matched
adjacent normal pairs. The oral malignant and precancerous tissues showed higher expression of ~97 kDa protein band (also known as post-tranlational truncated E-cad97) reactive with HECD-1 antibody along with native 120 kDa E-cad (E-cad120). The E-cad97 band was also seen in a few adjacent normal tissues of oral cancer and OPC. We found that the adjacent normal tissues showing presence of truncated band had advanced stage of oral cancer. Densitometric analysis was performed and the band intensities were quantitated followed by paired-t test analysis to compare intensities between the groups. Also, apparent increase in truncated E-cad is shown by calculating the ratio of E-cad97 to E-cad120. The results of densitometric analysis are documented in figures 1C and 1D. As shown in the graphs, E-cad97 accumulation were significantly increased in malignant (1C) and OPC (1D) tissues as compared to their adjacent normal tissues (p=0.01, p=0.033, respectively). The ratio of E-cad97:120 were also significantly higher in malignant tissues compared to their adjacent normal tissues (p=0.001). Similarly, E-cad97 expression was also significantly higher in OPC tissues, whereas, native E-cad120 did not show noteworthy difference between malignant/OPC tissues and their matched normal pairs.

Sialyl Lewis-X overexpression in oral cancer and OPC tissues. The representative western blots for sLeX in oral malignant (Fig. 2A) and OPC (Fig. 2B) tissues with their respective adjacent normal tissues are shown in figure-2. Reactivity of anti-sLeX antibody revealed a band of ~200
kDa molecular weight. sLeX exhibit higher band intensity in tumor tissues than adjacent normal and OPC tissues. The patterns clearly indicate that SLeX expression was relatively low in OPC tissues as compared to oral malignant tissues and higher than their matched normal tissues. A comparison of mean OD/mm² obtained from densitometric analysis of tumor/OPC tissues with their respective adjacent normal tissues is shown in Figs. 2C and 2D. Accordingly, sLeX expression was significantly higher in malignant tissues as compared to the mean value in adjacent normal tissues. At the chosen cut-off, E-cad97 and E-cad97:120 showed 54% and 60% sensitivity respectively with a specificity of 85% in tumor tissues. The sLeX expression in malignant tissues also showed good discriminatory efficacy with high sensitivity (76%) and specificity (76%).

ROC curve for E-cadherin and sLeX - ROC curve is a statistical analysis to examine the discriminatory efficacy of the parameters between two groups under the study which simultaneously considers sensitivity and specificity of the parameters. The ROC curves for E-cad97, E-cad97:120 ratio and sLeX in adjacent normal vs. oral malignant tissues are shown in Fig.3 (A, B), and their corresponding sensitivity, specificity and area under the curves (AUC) are presented in Tab.2. The accumulations of truncated E-cad97, high E-cad97:120 ratio and sLeX overexpressions were statistically significant in malignant tissues than their adjacent normal mucosa (p=0.007, p<0.0007 and p<0.0001, respectively). The cut-off values for tumor E-cad97 (>11.03 OD/mm²), E-cad97:120 ratio (>1.02 OD/mm²) and sLeX (>4.5 OD/mm²) were determined from multiple points on the ROC curve which was close to the mean value in adjacent normal tissues. At the chosen cut-off, E-cad97 and E-cad97:120 showed 54% and 60% sensitivity respectively with a specificity of 85% in tumor tissues. The sLeX expression in malignant tissues also showed good discriminatory efficacy with high sensitivity (76%) and specificity (76%).

Association of E-cadherin and sLeX expressions with clinicopathological characteristics in oral cancer patients. Multivariate analysis was performed to determine the correlation of E-cad and sLeX in oral malignant tissues with clinicopathological parameters. As shown in table 3, poorly differentiated grade III oral tumors showed high expression of E-cad97 and sLeX. Further, E-cad97 and sLeX were significantly higher in tumors of patients with lymphnode metastasis and advanced disease as compared to the patients without lymphnode metastasis and early disease stage, respectively. Also, positive correlation was seen between E-cad97 and various pathological parameters. However, E-cad120 expressions did not change when compared among the histological parameters. Thus, the data suggest a clear association of loss or truncation of E-cad and overexpression of sLeX with disease progression and poor prognosis of the patients.

Table 2. Statistical data of ROC curve analysis

<table>
<thead>
<tr>
<th>Variables (cut-off)</th>
<th>AUC</th>
<th>Significance</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-cad97 (OD/mm²)</td>
<td>0.477</td>
<td>0.808</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>E-cad97 (>11.03)</td>
<td>0.696</td>
<td>0.007</td>
<td>54%</td>
<td>85%</td>
</tr>
<tr>
<td>E-cad97:120 (>1.02)</td>
<td>0.778</td>
<td>0.0007</td>
<td>61%</td>
<td>85%</td>
</tr>
<tr>
<td>SLeX (>4.5)</td>
<td>0.83</td>
<td>< 0.0001</td>
<td>76%</td>
<td>76%</td>
</tr>
</tbody>
</table>

AUC – area under the curve

Table 3. Multivariate analysis for correlation of E-cadherin and sLeX with clinicopathological parameters in oral tumors

<table>
<thead>
<tr>
<th>Markers</th>
<th>Nuclear grade</th>
<th>Tumor differentiation</th>
<th>Stage</th>
<th>Lymphnode metastasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-cad97</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>E-cad97</td>
<td>0.05</td>
<td>0.059</td>
<td>0.05</td>
<td>0.02</td>
</tr>
<tr>
<td>E-cad97:120</td>
<td>0.086</td>
<td>0.1</td>
<td>0.05</td>
<td>0.079</td>
</tr>
<tr>
<td>SLeX</td>
<td>0.04</td>
<td>0.088</td>
<td>0.015</td>
<td>0.042</td>
</tr>
</tbody>
</table>

NS – non-significant
Discussion

Loss of cellular adhesion, detachment of the tumor cells from the primary sites and migration to distant organs are important steps in the metastases [21]. Earlier reports have shown the association of impaired expression of E-cad and sLe^X with various stages of cancer progression [8, 22–25]. In the present study, we demonstrate overexpression of truncated E-cad[97] and sLe^X is an early event during oral carcinogenesis. Further, ROC curve analysis revealed good sensitivity and specificity for E-cad[97], E-cad[97][120] and sLe^X suggesting an early event. Also, loss of E-cad and overexpression of sLe^X showed positive correlations with oral cancer progression.

E-cad expression has been reported in various human cancers [7, 22, 26]. The mechanisms of functional loss of E-cad expressions is still inadequately understood, whether it occur at genetic levels or the abnormal synthesis or the posttranslational modification of the protein. However, much larger fraction of cancer showed reduced or absent E-cad mRNA or protein expression, yet no mutations in E-cad gene were detected [7]. In the present study, E-cad expression in oral cancer and OPC tissues was detected by western blot analysis using HECD-1 antibody. The antibody reacts with both ~120 kDa E-cad under normal conditions, and ~97 kDa truncated E-cad. Densitometry and statistical analysis revealed significant increase in E-cad truncation in tumors and OPC tissues as compared to their matched pairs, whereas, E-cad[120] did not alter much in those tissues. This indicates that either newly synthesized E-cad by tumor cells may be truncated or the truncation of the native E-cad increases during disease progression. The present findings of E-cad truncation in oral cancer is supported by previous reports in prostate cancer suggesting a link between E-cadherin truncation and tumourigenesis [26, 27]. The cytoplasmic domains of E-cad interact strongly with a group of intracellular proteins catenins; which are essential for cellular adhesion and signaling. The truncation of the E-cad cytoplasmic domain deletes catenin binding sites leading to a loss of cadherin-mediated adhesion [28]. The loss of E-cad on cell surface linked to modulated intercellular adhesion which may facilitate detachment of tumour cells from primary tumor.

In this study, E-cad truncation accompanied overexpression of sLe^X in oral tumors and OPC tissues. The presence of sLe^X on cancer cells serves an efficient ligand for endothelial cells. sLe^X overexpression may induce vascular E-selectin expression during hematogenous metastasis which facilitates cancer cells to travel to the distant organs via blood stream. Interaction of cancer cells with endothelial cells via complex formation of sLe^X-E-selectin may have physiological relevance in hematogenous metastasis of cancer cells [29]. We observed increased expression of sLe^X in oral cancerous and OPC tissues. The approximate band size of carrier protein expressing sLe^X epitope in oral tissues was 200 kDa and this carrier protein could be mucin. According to Hanski et al. mucins MUC1 and MUC2 serve as carriers of sLe^X in colon carcinomas [30].

In support to this, Mann and colleagues suggested several unidentified mucins which may carry significant amount of this carbohydrate epitope [29]. However, other comparative study indicated MUC1 and sLe^X as independent prognosticators for colon cancer [31]. sLe^X expressions have been reported as predictors of invasiveness and metastatic potentials in cancer patients [14, 18, 19]. Farmer et al. have shown that sLe^X has important role in metastasis of head and neck carcinoma [32]. A study on B16-F1 melanoma cells showed that fucosyltransferase III is responsible for sLe^X expression and high metastatic potentials [24]. Furthermore, tumor formation could be inhibited by pre-incubation of those cells with anti-sLe^X antibody. The increased accessibility of sLe^X epitopes in carcinoma has been reported to be associated with altered sialylation and/or fucosylation pattern of cell surface molecules [11]. The data from our laboratory revealed overall increased sialylation [33] and fucosylation of proteins in oral cancerous and precancerous tissues and serum. In addition, we found increased activity of total fucosyltransferase in oral tumors (unpublished data).

E-cad truncation and sLe^X overexpression in OPC tissues demonstrate an early event during oral cancer progression. Also, their expression was seen in few adjacent normal tissues which may be suggestive of the process of field cancerization. The apparently adjacent normal tissues might have undergone certain genetic and biochemical changes even though these cells may yet be histopathologically normal. This suggests an early event or the presence of occult malignant disease even after surgical resection of the tumor. However, local recurrence may occur even with histopathologically negative surgical margins. Hence, comparison of malignant tissues with their corresponding adjacent normal tissues would help understanding activation of malignant phenotypes.

The present study demonstrates a good discriminatory efficacy of E-cad and sLe^X using semi-quantitative western blot. The efficiency may be improved by ELISA-based quantitative analysis; however, this method is unable to detect truncated form of E-cad. Our data suggest E-cad[97], E-cad[97][120] and sLe^X may be useful to detect early changes during oral carcinogenesis. The E-cad[97] and sLe^X may be neo-expressed by cancer cells and not present in normal tissues. E-cad and sLe^X expression in the present study was detected from whole protein lysates of tumor tissue. Lysate is a mixture of heterogeneous cell populations comprises clusters of premalignant or malignant cells, inflammatory infiltrates and adjacent stromal cells especially fibroblasts and endothelial cells. The use of microdissection method helps overcome the drawbacks of tissue complexity by isolation of different cell types including tumor and surrounding stromal cells. The expression of truncated E-cad[97] and sLe^X in particular cell types could be determined using microdissection in conjunction with molecular techniques. There are different types of microdissection techniques available that has advanced the ability to acquire pure cells population or single cell for molecular analyses and, genome and proteome expression profiling [34–36]. It also
helps analyzing early time points during tumorigenic process [37]. However, we could not use mechanical or laser microdissection in the present study due to availability of a very small size of tumors.

Multivariate analysis showed the correlation of loss or truncation of E-cad and sLeα overexpression with oral cancer progression and prognostication. An increased expression of E-cadP77, E-cadP71/200 and sLeα was seen in tumor tissues with lymphnode metastasis and advanced disease (stage III+IV) compared to the patients without lymphnode metastasis and early disease (stage I+II), respectively, whereas E-cadP120 remained unaltered. Studies have shown E-cad as a prognosticator in various cancers [23, 38–40]. Elzaghedi et al. have reported that the survival of lymphnode positive breast cancer patients can be predicted by E-cad index [39]. High levels of soluble E-cad are reported to be a potentially valuable pre-therapeutic prognosticator and correlated with inoperability/palliative treatment and lymphnode metastasis in gastric cancer [40].

Recently, an inverse correlation between sLex and E-Cadherin has been reported in canine mammary carcinomas [18]. The presence of carbohydrate receptor sLeα in tumors or serum has been associated well with poor prognosis of various cancers [12, 14, 16, 17] and suggested no other carbohydrate epitope examined to date has equal prognostic value. sLeα expressions in colorectal and non-small cell lung cancer has been correlated with advanced disease, increased distant metastasis and decreased survival [41]. An in vitro study identified molecules capable of interfering metastatic process by inhibiting sLeα-mediated adhesion between tumor cells and activated endothelial cells [42]. Apart from its use as tumor marker, antibodies raised towards sLeα may be used as a passive tumor vaccine. Studies have reported the importance of sLeα and its analogs in cancer therapy [24, 43].

In conclusion, the present study showed association of E-cadP77 truncation and sLeα overexpression with invasive and metastatic potentials of oral cancer and an inverse correlation among them. Increased E-cad truncation and sLeα expression represents functional loss of cell-adhesion properties, which suggest that these molecules may facilitate tumor cells to escape and metastasize. Further, these alterations in OPC could be an early event during malignant transformation. Overall, these findings propose E-cadP77 and sLeα may be valuable for early detection and better prognostication of oral cancer as well as in understanding the biology of progression of oral cancer metastasis.

References

clinicopathological features and E-Cadherin expression.
PMid:1767904 PMcid:1933546

Shimodaira K,Nakayama J,Nakamura Net al. Carcinoma-associated
expression of core 2 beta-1,6-N-acetylgalcosaminylltransferase
gene in human colorectal cancer: role of O-glycans in tumor

Barnes L, Evenson JW, Reichhart P et al. World Health Organiza-
tion Classification of Tumours; Pathology and Genetics
of Head and Neck Tumours, IARC Press: Lyon 2005, pp
164–208.

Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and
doi:10.1038/nrc1098
PMid:12778135

Frixen UH, Behrens J, Sachs M et al. E-cadherin-mediated
cell-cell adhesion prevents invasiveness of human carcino-
jb.113.1.173 PMid:2007622 PMcid:2289821

Hunx GF, Chang CS, Liu CJ et al. Differential expression of
E-cadherin in metastatic lesions comparing to primary oral
doi:10.1011/j.1600-0741.2006.00474.x PMid:17032390

Kanagi R. Carbohydrate-mediated cell adhesion involved
in hematogenous metastasis of cancer. Glycoconj J 1997; 14:
577–584.

Ohtsuka C, Tsuboi S, Fukuda M. Dual roles of sialyl Lewis
X oligosaccharides in tumor metastasis and rejection by
emboj/18.6.1516 PMid:10075923 PMcid:1171240

Rashid MG, Sanda MG, Vallorosi CJ et al. Posttranslational
truncation and inactivation of human E-cadherin distinguishes
prostate cancer from matched normal prostate. Cancer Res

Kuefer R, Hofer MD, Gschwend JE et al. The role of an 80
kDa fragment of E-cadherin in the metastatic progression of

Beavan IR. The E-cadherin-catenin complex in tumour
metastasis: structure, function and regulation. Eur J Cancer
2000; 36: 1607–1620. doi:10.1016/S0959-8049(00)00158-1
PMid:10959047

Mann B, Klussmann E, Vandamme-Feldhaus V et al. Low O-a-
cetylation of sialyl-Lex(x) contributes to its overexpression in
doi:10.1002/(SICI)1097-0215(19970717)72:2<258::AID-IJ
CTo>3.0.CO;2-C

Hanks C, Hanski ML, Zimmer T et al. Characterization of the
major sialyl-Lex-positive mucins present in colon, colon
carcinoma, and sera of patients with colorectal cancer. Cancer

Baldus SE, Monig SP, Hanisch FG et al. Comparative evaluation
of the prognostic value of MUC1, MUC2, sialyl-Lewis(a)
and sialyl-Lewis(x) antigens in colorectal adenocarcinoma.
2002.01389.x PMid:1203064

Farmer RW, Richtsmeier WJ, Scher RL. Identification of
sialyl Lewis-x in squamous cell carcinoma of the head and
0347(199812)20:8<726::AID-HED11>3.0.CO;2-C

Shah MH, Telang SD, Shah PM et al. Tissue and serum al-
pha2-3- and alpha2-6-linkage specific sialylation changes in

Fend F, Raffeld M. Laser capture microdissection in patholo-
PMid:1104055 PMcid:1731250

Staub E, Groene J, Heinz E et al. Genome-wide expression
patterns of invasion front, inner tumor mass and surrounding
normal epithelium of colorectal tumors. Mol Cancer 2007;
6: 79. doi:10.1186/1476-4598-6-79 PMid:18081933 PM-
cid:2222649

Nambar PR, Boutin SR, Raja R et al. Global gene expression
profiling: a complement to conventional histopathologic analy-
vp-42-6-735 PMid:16301570

Bonner RF, Emmert-Buck M, Cole et al. Laser capture
microdissection: molecular analysis of tissue. Science 1997;
278: 1481, 1483.

Giroldi LA, Schalken JA. Decreased expression of the in-
tercellular adhesion molecule E-cadherin in prostate cancer:
biological significance and clinical implications. Cancer
PMid:5448824

Elzegheid A, Kuopio T, Ilmen M et al. Prognostication of
invasive ductal breast cancer by quantification of E-cadherin
immunostaining: the methodology and clinical relevance.
Histopathology 2002; 41: 127–133. doi:10.1046/j.1365-2559.
2002.01448.x PMid:12147090

Chan AO, Lam SK, Chu KM et al. Soluble E-cadherin is a
valid prognostic marker in gastric carcinoma. Gut 2001; 48:
808–811. doi:10.1136/gut.48.6.808 PMid:11358900 PM-
cid:1728335

Ogawa J, Tsurumi T, Yamada S et al. Blood vessel invasion
and expression of sialyl Lewisw in proliferating cell
lysates of head and neck squamous cell carcinoma. J Oral
Pathol Med 1998; 27: 1516–1525. doi:10.1046/j.1365-
208-

Fukami A, Iijima K, Hayashi M et al. Macrophelide B
suppressed metastasis through inhibition of adhesion of
sLe(x)/E-selectin molecules. Biochem Biophys Res Com-
PMid:11866473

Hakomori S, Zhang Y. Glycosphingolipid antigens and
S1074-5521(97)90253-2